First-Class Dynamic Types

Abstract

Since LISP, dynamic languages have supported dynamically-checked type annotations. Even in dynamic languages, these annotations are typically static: tests are restricted to checking low-level features of objects and values, such as primitive types or membership of an explicit programmer-defined class.

We propose much more dynamic types for dynamic languages — first-class objects that programmers can customise, that can be composed with other types and depend on computed values — and to use these first-class type-like values as types. In this way programs can define their own conceptual models of types, extending both the kinds of tests programs can make via types, and the guarantees those tests can provide. Building on a comprehensive pattern-matching system and leveraging standard language syntax lets these types be created, composed, applied, and reused straightforwardly, so programmers can use these truly dynamic first-class types to make their programs easier to read, understand, and debug.

Authors

Michael Homer, Timothy Jones, James Noble

Published in

Dynamic Language Symposium (DLS), 2019

The final copy of this publication is available from the publisher.

Resources

PDF
mwh.nz/pdf/dls2019
this page
mwh.nz/pubs/dls2019
Michael Homer — 2023 d38f60fb