First-Class Dynamic Types”

Michael Homer
School of Engineering
and Computer Science
Victoria University of Wellington
New Zealand
mwh@ecs.vuw.ac.nz

Abstract

Since LISP, dynamic languages have supported dynamically-
checked type annotations. Even in dynamic languages, these
annotations are typically static: tests are restricted to check-
ing low-level features of objects and values, such as primi-
tive types or membership of an explicit programmer-defined
class.

We propose much more dynamic types for dynamic lan-
guages — first-class objects that programmers can custom-
ise, that can be composed with other types and depend on
computed values —and to use these first-class type-like val-
ues as types. In this way programs can define their own con-
ceptual models of types, extending both the kinds of tests
programs can make via types, and the guarantees those tests
can provide. Building on a comprehensive pattern-matching
system and leveraging standard language syntax lets these
types be created, composed, applied, and reused straightfor-
wardly, so programmers can use these truly dynamic first-
class types to make their programs easier to read, under-
stand, and debug.

CCS Concepts -« Software and its engineering — Data
types and structures.

Keywords dynamic types, pattern matching, contracts, run-
time checking

ACM Reference Format:

Michael Homer, Timothy Jones, and James Noble. 2019. First-Class
Dynamic Types. In Proceedings of the 15th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages (DLS ’19), October 20,
2019, Athens, Greece. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3359619.3359740

“This work is supported in part by the Royal Society of New Zealand Te
Aparangi Marsden Fund Te Puitea Rangahau a Marsden.

©ACM 2019. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record
was published in the 2019 Dynamic Language Symposium, https://dx.doi.
org/10.1145/3359619.3359740.

DLS ’19, October 20, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6996-1/19/10...$15.00
https://doi.org/10.1145/3359619.3359740

Timothy Jones
Montoux
New York, USA
tim@montoux.com

James Noble
School of Engineering
and Computer Science
Victoria University of Wellington
New Zealand
kjx@ecs.vuw.ac.nz

1 Introduction

Most dynamically-typed languages do not provide much sup-
port for programmers incorporating type checks in their

programs. Object-oriented languages have dynamic dispatch
and often explicit “instance of” reflective operations, grad-
ual typing provides mixed-mode enforcement of a single

static type system, and functional languages often include

pattern-matching partial functions, all of which are relatively
limited at one end of the spectrum. At the other end, lan-
guages like Racket support higher-order dynamic contract

systems, wrapping objects to verify contracts lazily, and with
concomitant power, complexity, and overheads [10, 51].

Programmers may wish for a greater level of run-time
checking than provided by the language, or merely different
checking. In this paper we explore a design in between the
extremes: first-class dynamic types, building on syntactic
support for type annotations and a framework for first-class
pattern-matching, and extend the Grace language leverag-
ing its existing support for both [2, 23, 37]. The key change is
that run-time expressions may be used as type annotations,
and evaluate to first-class pattern objects: any value that
flows through a type annotation is dynamically checked by
the pattern, and types are constructed in a principled, com-
positional, and fully-extensible fashion. From most program-
mers’ perspectives, these first-class annotations simply are
types; more-advanced programmers can assemble new types
either from reusable components or by writing custom pat-
terns from scratch, drawing on the clear semantics of pattern-
matching.

First-class dynamic types can encapsulate any check that
can be expressed in code, can make use of or be parame-
terised by run-time values, can produce warnings or errors,
and can manipulate dynamic program state. A pattern al-
ready created for use in pattern-matching can be used as a
type, and vice-versa, rather than each being a distinct pro-
gram element, and a library of patterns can provide a wealth
of different sorts of type checks within the same language
or even the same program. Our system requires no addi-
tional annotations, extra sub-languages, or new semantic
or syntactic categories; rather, by adopting existing type-
annotation syntax and pattern matching, first-class dynamic
types fit seamlessly into the existing language. A program
can be shorter, clearer, and more precise by abstracting away

https://doi.org/10.1145/3359619.3359740
https://doi.org/10.1145/3359619.3359740
https://dx.doi.org/10.1145/3359619.3359740
https://dx.doi.org/10.1145/3359619.3359740
https://doi.org/10.1145/3359619.3359740

DLS ’19, October 20, 2019, Athens, Greece

checks that would be repeated redundantly or omitted neg-
ligently, while more directly expressing the intention of the
programmer simultaneously with providing immediate di-
agnostics.

The resulting system sits at an interesting point in the de-
sign space: less explicit than assertions or Eiffel-style pre-
and post-conditions, less powerful than full-scale Racket-
style higher-order contracts, more flexible than transient
dynamic type tests, while retaining immediate, straightfor-
ward, pattern-matching semantics.

1.1 Contributions
The contributions of this paper are:

e The design of a system of dynamic type-checking based
on a pattern-matching framework, with user-defined
patterns.

e An implementation of this system on top of an exist-
ing implementation of the Grace language.

o A set of small case studies illustrating different styles
of checking that can be introduced.

2 DPatterns in Grace

We build on an object-oriented language called Grace [6],
which already supports an object-oriented form of pattern
matching [23]. We will extend this pattern-matching system
to more general applications, but keep the underlying de-
sign intact.

There are three core elements of Grace pattern matching:

e a “pattern” is an object with a method match return-
ing a MatchResult object indicating success or failure,
where match may have arbitrary user code;

e a “lambda pattern” syntactic construct, where a unary
block (an anonymous single-parameter function) con-
nects a pattern, a name, and the ability to execute code
in the context of the name when the pattern matches;
and

e amatch-case statement, which combines many lambda
patterns together to provide a typecase-like construct.

In more detail, a pattern object has a match method ac-
cepting a single parameter, the object to be scrutinised, and
returning a MatchResult object, which is a Boolean with a
result property. A successful match acts like true, and m.result
is bound to the matched object, while a failed match acts
like false. For example, we can write a pattern to check if its
argument is negative:

def negativePattern = object {
method match(o) — MatchResult {
if (0 < 0) then {
return successfulMatch(o)
}else {
return failedMatch(o)

1

Michael Homer, Timothy Jones, and James Noble

A successful match result behaves like a Boolean true, and
a failure like a Boolean false, so patterns can be used directly
in if statements:

if (negativePattern.match(obj)) then {
}else {
}

Any pattern can be used in the match-case construct:

match (obj)
case { x : EvenNumber — "even" }
case { x : Number — "other number" }
case { x : Green — "green" }
case { _ — "not numeric nor green" }

The key idea here is that Grace’s blocks (akin to Smalltalk
or Ruby blocks, or lambda expressions) model partial func-
tions, rather than total functions as in most other languages.
This is because single-parameter blocks also implement the
match interface — which is why we also call blocks “lambda
patterns” when they are used in the context of the wider pat-
tern subsystem.

When a lambda pattern is asked to match another object,
the lambda pattern checks that object against the type or
pattern annotation on the corresponding parameter — in the
match-case example, the first block will test the obj against
the EvenNumber annotation. If the annotation matches, the
whole lambda pattern executes its body and returns an in-
stance of successfulMatch; if that annotation doesn’t match,
the whole lambda pattern returns a failedMatch.

Each case clause in a match-case construct is a single
lambda pattern. The match-case method asks each lambda
to match in turn until one succeeds, and the body of that
block (only) executes. The overall match-case returns the
result of the executed block, or raises an error if no pattern
matched.

Patterns also support operators & and |, which combine
two patterns together with conjunctive or disjunctive se-
mantics. These operators parallel the operators used with
Grace types, and in fact all types in Grace are reified as pat-
terns at run time. The type Employee & Dog represents ob-
jects that are simultaneously Employees and Dogs (accord-
ing to standard structural subtyping rules), and the type rei-
fied as the pattern Employee & Dog will succeed at match-
ing the same objects.

A MatchResult object has a method result containing the
object that has been matched, but it is possible for this object
to differ from the one originally provided. Notably, the result
of a block used as a lambda pattern is the value returned by
the body of the block. Grace also uses this feature to support
type casts, but it can be used for specialised patterns that

First-Class Dynamic Types

manipulate their targets as well. For example, a pattern like
the following:

def halfPattern = object {
method match(o) — MatchResult {
if (Number.match(o)) then {
return successfulMatch(o / 2)

} else {
return failedMatch(o)

23

matches objects that are numbers, but yields half the value
of the number as its result, so that:

match (8)
case { x : halfPattern — print(x) }

will print “4” because x is bound to the result value of the
successfulMatch —in this case 4 — that was returned from
the halfPattern’s match method.

3 Patterns as Types

Grace’s original pattern-matching framework promotes types
to reified pattern objects at run time, but the equivalence is
not bidirectional: programmers can only annotate declara-
tions with patterns (rather than types) in lambda patterns.
A programmer is not permitted to annotate a method pa-
rameter, local variable, field, or method return value with a
pattern, only a true type. In this work we generalise the sys-
tem to permit patterns in all of these places, and augment
the system to dynamically enforce that they are satisfied by
the values passing through the annotations.
In particular, we let a general pattern be used as:

e A method parameter type

e A local variable (var) or constant’s (def) type
e An object field’s type

e The return type annotation on a method

Anywhere that a value can be given an expected type in
traditional code, we now allow a dynamically-enforced pat-
tern to take that place, and enforce validation of any value
that passes through that annotation as soon as it reaches
that point. A pattern is matched using Grace’s standard in-
frastructure: its match method is called by the runtime sys-
tem and given the assigned, passed, or returned value to in-
spect. A successful match allows the program to continue,
and binds the result value of the match to the declared name
(or uses it as the return value). A failed match triggers an im-
mediate run-time type error.

3.1 Semantics

To support dynamic first-class types, a Grace runtime sys-
tem must invoke the pattern’s match methods implicitly,
as they are reached in the normal course of execution. To
make the intended semantics clear, we show how they could

DLS ’19, October 20, 2019, Athens, Greece

be implemented by a source-to-source rewriting of a pro-
gram’s source code (Vitousek et al. [57] describe Reticulated
Python’s semantics in a similar way). Given a method:

method foo(x : T) — R {

return x.name

there are two elements to deal with:

e The type annotation on the parameter x, T.
e The return type annotation, R.

We will address these in turn. First, for the parameter:

1. Rename the parameter to x’arg, so that we can create
anew local variable called x later for the method body
to use.

2. Create a new local variable def x’pattern = T, to eval-
uate the type annotation and store it.

3. Create a new local variable

def x’matchResult = x’pattern.match(x’arg)

using the pattern-match infrastructure to initialise it.
4. Check that the match succeeded, and raise an error if
not:

if (x"matchResult) then {
reportTypeError "x did not meet type T"

}

5. Finally, create our new local variable with the origi-
nal parameter name, def x = x’matchResult.result, so
that the remaining code can continue in terms of x.

The outcome at this point is:

method foo(x’arg : T) — R {
def x’pattern =T
def x’matchResult = x’pattern.match(x’arg)
if (Ix"matchResult) then {
reportTypeError "x did not meet type T"

}

def x = x’matchResult.result

return x.name

The same process applies for any additional parameters as
well. The pattern expressions are re-evaluated each time the
method is called, but the implementation is free to optimise
these evaluations away where the expression is known to be
static, or to memoise when it is known to be pure. While it is
possible to restrict the allowable pattern expressions further,
we are permitting fully dynamic behaviour to explore the
widest range of possible applications.

For the return type, the pattern must be evaluated in the
same way, but any return x.name statement must be rewrit-
ten in the following way:

DLS ’19, October 20, 2019, Athens, Greece

def return’matchResult = return’pattern.match(x.name)
if ('return’matchResult) then {
reportTypeError "return value did not meet type R"

}

return return’matchResult.result

The final outcome is then a method evaluating patterns at
the top, checking each argument or return value against the
corresponding pattern when it is available, and otherwise
proceeding exactly as it would have normally in the body.

As Grace’s var and def declarations are syntactic sugar
for accessor methods, the same transformation applies.

3.2 Type Declarations and Interfaces

Grace allows type declarations of the form

type Foo = interface {
x(_ : Number) — String
y — Boolean

}

These interfaces naturally represent structural types, and
have a run-time existence as pattern objects: Foo.match(o)
succeeds, and has a Foo-typed result, if o satisfies that struc-
tural type. These objects expose the declared signatures so
that a programmer can build patterns for a different type
system leveraging the interface syntax if desired. We also
allow run-time values to be assigned to type declarations.

Different styles of check may even be wrapped around
different interfaces in the same program, to allow different
systems to be applied at once in different areas of the pro-
gram (including the baseline structural system). The wrap-
ping must occur explicitly — we do not automatically wrap
all interfaces, which means a small amount of additional
code for each declaration. In practice, we do not find this
requirement onerous, in particular because the type decla-
ration need only appear once, and then refers to the pattern
object forever after. It would be possible for a more aggres-
sive rewrite to convert the interface expressions automati-
cally, at the cost of some potential behavioural changes and
limits.

3.3 Static Type Checking

Our approach operates on top of a purely untyped run-time
system. Static checking is also useful, however, and a user
or library author can use Grace’s dialects [22] and its pre-
execution checker methods to create a static checker con-
sistent with their dynamic checks if they desire. We do not
explore this idea further here: Homer et al. [22] includes ex-
amples of dialects that perform static type checks and re-
quire explicit type annotations, along with others. Dialects
have enabled Grace to support different “pluggable” static
type checkers: this work aims to give similar flexibility to
Grace’s dynamic type checking.

Michael Homer, Timothy Jones, and James Noble

4 Case Studies

We now present a series of small case studies illustrating
some of the breadth of different dynamic type systems that
can be implemented on this framework. All of these systems
exist in other languages: here we show that they can all be
built on the same principled framework.

4.1 Shallow Structural Type Checks

We can obtain structural checking — replicating the default

behaviour of Grace reified types — by reflectively checking

whether the necessary methods are present on an object. We

first define a simple pattern that does so literally, and then

a more advanced pattern that lifts and wraps an interface.
Our first pattern can be used as:

method greet(p : Methods ["firstName", "lastName"]) {
print "Hello " ++ p.firstName ++ " "

}

The p parameter of greet has been given a type annotation
Methods ["firstName", "lastName"]: a call to the Methods
class, passing a list literal argument containing two method
names as strings. The resulting pattern will check that cor-
responding methods exist, so the method body can invoke
expressions such as p.firstName safely.

The Methods pattern needs only to check reflectively that
the methods are present on the target object, and returns a
failedMatch as soon as it finds one that is absent:

++ p.lastName

import "platform/mirrors" as mirrors
class Methods(l) {
method match(obj) {
def mirror = mirrors.reflect(obj)
for (I) do { methodName —
if (Imirror.respondsTo(methodName)) then {
return failedMatch(obj)

}
}
return successfulMatch(obj)

1

With the above class available, our greet method would
work as written, and would report a type error if its argu-
ment did not have the necessary methods.

We can also define a wrapper class that can be given an
interface expression and checks that each method is present:

class wraplnterface[[1]] {
method match(obj) {
def mirror = mirrors.reflect(obj)
for (l.signatures) do { meth —
def methodName = meth.name

First-Class Dynamic Types

The wrapper corresponds almost exactly to the version
with string literals above, but accepts a type parameter |
instead of the list of strings. With the wrapper in scope, a
structural type can be created as follows:

def HasFoo = wraplnterface[[interface { foo }]]
method useFoo(x : HasFoo) { ... }

In this way the syntactic form afforded by the interface
expression of the language can be leveraged to allow con-
veniently writing method signatures to use. From the end-
user perspective, the types created by either Methods or
wraplnterface are interchangeable, and HasFoo could be de-
fined with either and subsequently used identically.

A pattern could go further and implement a different type
system while retaining the syntactic form if desired. For ex-
ample, both these definitions implicitly permit subtyping:
an object will be matched if it has at least the methods named
by the pattern. but it will also match if it has a superset of
these methods. We can extend this pattern to support ex-
act type matching, so that an object must have only those
methods, quite straightforwardly using inheritance [26, 35]:

class ExactMethods(l) {
inherit Methods(l)
alias match(_) as matchMethods(_)
method match(obj) {
def mirror = mirrors.reflect(obj)
if (mirror.size == l.size) then {
return matchMethods(obj)
}else {
return failedMatch(obj)

1

4.2 Branded Nominal Types

As an alternative to structural types, we can create a nomi-
nal type system. Brands are an approach to adding nominal
types on top of a non-nominal type system (such as Grace’s
structural system). Objects marked with a brand have an ad-
ditional type, which distinguishes them in type checks and
typecase from objects with the same shape, but a different
(or no) brand. For example, in a structural system, the types:

type Graphic = interface { draw — Done }
type Gunslinger = interface { draw — Done }

are indistinguishable — an inherent drawback of structural
systems — but brands can introduce a finer distinction as
needed by giving some objects a distinct “brand” marker.
Here we will replicate the brand system proposed [25] for
Grace, but without any special-purpose language extensions.

This brand system separates the brand object, which is
used to brand (mark) an object, and the brand pattern, or
brand Type, which is used to confirm that an object has the
correct brand. These two objects can be separated, so that

DLS ’19, October 20, 2019, Athens, Greece

external users can only use the type, but not create new
branded objects themselves [61].

import "platform/mirrors" as mirrors
class brand {
def Type is public = brandPattern(self)
method brandObject(obj) {
mirrors.mutable(obj).addMetadata("brand", self)

}
}

class brandPattern(needle) {
method match(obj) {
def m = mirrors.reflect(obj)
if (m.getMetadata("brand").contains(needle))then{
return successfulMatch(obj)
}
return failedMatch(obj)
}
}

Instantiating a brand object creates a new brand; the Type
method returns the pattern that tests for that brand.

We can now create a brand and apply it to an object, and
use the brand’s Type to annotate a parameter:

def myBrand = brand

def myObj = object {}
myBrand.brandObject(myObj)
method foo(x : myBrand.Type) {}
foo(myObj)

foo(object {})

The first call to foo will succeed, because that object has
been branded so the pattern check will succeed, while the
second call will be a dynamic type error because the pattern
will fail.

4.3 Restricted Subtypes

It is often useful to have parameters restricted to a particu-
lar range or subset of possible values, and some languages
(such as Pascal [24]) allow defining restricted types in this
way: for example, defining a restricted integer subtype to
represent a Unicode codepoint with range 0-1,114,112. In
our system a simple RangeType pattern can replicate this
ability:

method printCodepoint(b : RangeType(0,1114112)) { ... }

Integer subranges are particularly useful in Grace, which
otherwise has only a single Number type. We can use sub-
ranges to get the effect of more specific integral types, such
as a Byte type for integers from 0 to 255:

type Byte = RangeType(0, 255)
and then use it on a method parameter:

method printByte(b : Byte) { ... }

DLS ’19, October 20, 2019, Athens, Greece

This RangeType pattern is fairly straightforward:

class RangeType(min, max) {
method match(obj) {
def int = obj.asInteger
if ((int > min) && (int < max)) then {
return successfulMatch()

}
return failedMatch(obj)

}
}

Grace’s standard library includes a built-in range object,
created by the “..” operator (e.g. 0..255). By adding the match
method from RangeType into the library’s ranges, those ob-

jects can be used directly as integer subrange types:

method printPercentage(e : 0..100) { ... }
type Byte = 0..255

As in Smalltalk, Grace ranges are also collections. We can
lift any collection to a pattern with an ElementPattern which
implements match by checking whether a collection con-
tains the object being matched. This allows collections to
model (dynamic, if desired) enumeration types:

non

def legoColours = set("red", "yellow", "blue", "green")
type LegoColour = ElementPattern(legoColours)
method findBrick(col : LegoColour) { ... }

We have implemented lifting collections to patterns, but
have avoided any further language extensions here.

4.4 Argument-dependent Patterns

We can introduce patterns that can use the values of other ar-
guments to determine whether an argument is satisfactory.
For example, a method can require that its second argument
is greater than its first:

method foo(x, y : be > x) {}
or that a list index is within the range of the list:

method getltem(list, index : be > 0 & be < list.size) {
return list.get(index)

}

The “be” term represents the value of the current argu-
ment, and its operators create patterns themselves to match
the requested limit — effectively currying the left-hand ar-
gument. Those resulting patterns are what the argument it-
self is validated against. For example, be > 0 above evalu-
ates to a pattern that requires its target to be positive. Be-
cause parameter patterns are evaluated in order, the expres-
sion can refer to arguments to the left of the current one:
be < list.size works because list has already been bound at
the time of execution, and is available for use like any other
name in scope. The pattern expression could also use self, or
any other declarations in scope, such as fields.

Michael Homer, Timothy Jones, and James Noble

This system can be implemented in our framework, al-
though that implementation is quite subtle:

def be = object {
method >(other) { relativePattern({t — t > other}) }
method <(other) { relativePattern({t — t < other}) }
method <(other) { relativePattern({t — t < other}) }
method >(other) { relativePattern({t — t > other}) }

}
class relativePattern(lambda) {
method match(obj) {
if (lambda.apply(obj)) then {successfulMatch(obj)}
else {failedMatch(obj)} } }
method foo(x, y : be > x) {}
method getltem(list, index : be > 0 & be < list.size) {
return list.get(index)

}

The relativePattern lifts a block returning a Boolean into
a pattern, succeeding when the block returns true. The op-
erators on the “be” object return a relativePattern param-
eterised by a lambda block that computes the relevant test.
In fact, relativePattern works for any predicate: for example,
RangeType could be implemented with:

relativePattern({x — (x > min) && (x < max) })

The same behaviour can be replicated by the user using
the & pattern combinator:

type Byte = (be > 0) & (be < 255)

4.4.1 Higher-order Dependent Types

Because Grace patterns are first-class objects, they can eas-
ily be passed to other patterns, letting Grace model higher-
order dependent types. For example, a matrix library could
define a pattern Matrix with two arguments for the dimen-
sions of the matrix. Methods can use that pattern alongside
the value of an argument to give concise and explicit tests
of compatible dimensions:

class matrix {
method *(other : Matrix(self.width, Number))
— Matrix(self.height, other.width) {

I8

Both self and the parameter other are used within the
pattern expression, with the higher-order pattern Matrix
given two patterns at both sites. Each subpattern is either
a number value, computed from one of the matrices, or the
Number type pattern itself for the “free” dimension in the
parameter. This style makes clear what is required and when
it will be checked, without introducing explicit code in the
method body to test the dimensions on either input or out-
put, and an error message can be reported automatically in

First-Class Dynamic Types

clear terms. The Matrix pattern to provide this functionality
need only be:

class Matrix(heightPat, widthPat) {
method match(o) {
if (heightPat.match(o.height)
|| 'widthPat.match(o.width)) then {
failedMatch(o)
} else {successfulMatch(o)}

1

4.5 Coercion and Clamping

Many languages implicitly coerce values between types. A
pattern can simulate this behaviour: because the result value
of a successful match need not be the original input object,
the pattern can perform whatever conversion is required
and allow the code to carry on as-is. For example, a type
that automatically “stringifies” values is as simple as:

def Stringify = object {
method match(obj) {
return successfulMatch(obj.asString)

1

This Stringify type can be used wherever another type is
required, and e.g. methods with Stringify-typed arguments
invoked with any type, but the body of the method will al-
ways see the string it expects:

method foo(x : Stringify) {
print("x": 7 ++ x)

}

foo "hello"

foo 1

foo(widget.button "close")

Coercing types can also be applied to variables or fields,
for example to clamp of a value to a range:

class Clamped(min, max) {
method match(obj) {
if (obj < min) then {successfulMatch(min)}
elseif {obj > max} then {successfulMatch(max)}
else { successfulMatch(obj) }

13
var rating : Clamped(1, 10)
rating := 999

print(rating)

will print 10, not 999.

These patterns explicitly have a run-time effect when ap-
plied: they change the values of variables, and can affect the
eventual result of the program. Automated coercion in par-
ticular is often regarded as a misfeature in languages that
contain it, and while we allow the programmer to “opt in”

DLS ’19, October 20, 2019, Athens, Greece

to any such behaviours, they (or their library or dialect au-
thor) might prefer to avoid them entirely.

4.6 Decorators

Similar to coercions, we can apply a decorator [16] to the ar-
gument object, perhaps to provide additional checking fur-
ther along in the program, or diagnostics. If this decorator
has the same shape as the original object (a true decorator),
the client code can continue essentially without noticing a
difference.

For example, given a conventional dynamic-language List

type List = interface {add(_); get(_); set(_,_)}

with no constraints on its elements, we can write a decorator
that ensures our code only stores and retrieves Strings:

def stringList = object {
method match(o) {
def mr = List.match(o)
if ('mr) then { return mr }
return successfulMatch(decorateStringList(o))

}
}
class decorateStringList(l) {
method add(s : String) { l.add(s) }
method get(i) — String { l.get(i) }
method set(i, s : String) { l.set(i, s) }
}

If we apply this pattern to our parameter or a variable,
within the method we will have a typed list of strings: if
we try to add anything that is not a string, we will receive
the usual error due to the argument checks on add and get,
and if we try to retrieve an existing item that is not a string
an error will also be reported when the return value of get
doesn’t match String:

def myList : stringList = list(1,2,3)
myList.add("Hello”) // OK
myList.add(1) / Dynamic error
myList.at(1) // Dynamic error

In a similar fashion, we can restrict our code to using only
read operations, or transform values along the way (perhaps
with our Stringify pattern from Section 4.5). A generic dec-
orator lifting a type could provide something approaching
the guarded gradual-typing semantics as in Typed Racket
[55] or Reticulated Python [57] semi-automatically. We can
both detect issues in our code, and alter how it behaves or
interacts with the rest of the program through an annota-
tion. In particular, decorating a return type means that the
rest of the program will see the decorated result.

These decorators are not perfect replacements for the orig-
inal object: because they are separate objects, they have dif-
ferent object identities and can be distinguished in some

DLS ’19, October 20, 2019, Athens, Greece

ways (for example, it may be possible for a hash table to
contain both objects simultaneously) [36]. The underlying
issues here are not due to the dynamic pattern system, but
the extent of the support for transparent decorators in the
underlying language runtime [40], but an implementation
such as chaperones [49] would enable clean replacement.

4.7 General Pre- and Post-Conditions

While the previous case studies have all examined or manip-
ulated the inspected value, a pattern’s match method can do
anything at all to decide whether to succeed or not. For ex-
ample, a pattern could check that a class invariant holds at
the end of a method by being placed as the return annota-
tion. The following class requires that “hp < maxHP” at the
end of each method, while allowing it to be violated within
a single method.

class rabbit {
var hp : Number := 10
var maxHP : Number := 15
def Mylnvariant = Confirm { hp < maxHP }
method tick — Mylnvariant { ... }
method consume(item : Food) — Mylnvariant { ... }

}

The Confirm pattern can be defined as follows:

class Confirm(predicate) {
use basePattern
method match(o) {
if (predicate.apply) then { succeed(o) }
else { fail(o) }
3

The return value itself is never scrutinised — only the pred-
icate block is evaluated to determine whether to match or
not — and the value is passed along unchanged. Nonetheless,
a violation of the invariant will be detected and reported
on the appropriate method. Multiple conditions could be
chained together within the block, or combined with an-
other pattern using & to conjoin them or > to compose them,
so a method checking both the invariant and that the result
is a Number could be annotated — Mylnvariant & Number.

A precondition can be checked by a similar pattern on
any parameter to the method, while attaching the pattern
to a field definition would validate it immediately each time
the field value changed. With suitable definitions, this level
of checking could be enabled during development and re-
moved for production by eliminating the actual checking
from the patterns and ignoring their combination with oth-
ers.

5 Implementation

We have extended the Kernan implementation of the Grace
language to support all of the functionality of our system.

Michael Homer, Timothy Jones, and James Noble

All of the code from the case studies is executable on our ver-
sion of Kernan, and the complete code files including sample
cases are included in the distribution.

Our extension uses a mix of code-rewriting and modifi-
cations of the run-time system. Because Kernan is a tree-
walking interpreter, some aspects (particularly around vari-
able names) are much simpler as rewrites, while other as-
pects (notably field and variable assignments) are simpler
within the runtime. Regardless, the patterns in use are exe-
cuted in the same way, and all of the checks, transforma-
tions, and reporting occurs in user code. The transforma-
tions do not rely on the interpreted nature of the system and
should be equally applicable to a compiled object-oriented
target. All pattern code executes as ordinary user code as
though from a standard method call in that site.

The implementation is available as auxiliary material, in-
cluding a pre-built binary distribution (which runs on all
platforms with Mono or the .NET runtime) along with the
source code.

6 Discussion
6.1 Error Locations

There are three basic approaches to generating type errors
when an argument (or assigned) value does not meet the
annotation:

1. Generate a conditional as part of the rewrite that re-
ports an error:

if (!x’matchResult) then {
reportTypeError "x does not satisfy type T"

}

The message format is fixed by the rewriting or run-
time system, and not customisable by the type author,
but all static information is available for use in it, in-
cluding the parameter name and type annotation.

2. Call an additional method on the match result object,
which can report the error with any phrasing or detail
required:

x’matchResult.assert "x"

In this case, the parameter name must be passed as an
argument in order for the error message to be able to
include it.

3. Add no additional code and proceed unconditionally
to the final assignment, but have the result method on
failed matches throw an error:

// Throws an error if x’'matchResult is a failure
def x = x’matchResult.result

In this case, the reported error is not able to include
the parameter or variable name, though it is able to
use the non-matching value and any information given
to the pattern. However, no extension to the existing

First-Class Dynamic Types

pattern interface is required and sensible default be-
haviour can be provided.

Wrapping the check in a try-catch and reporting a
combination of static information and the dynamic
message raised by result would support both needs,
but introduce complexity to the implementation and
explanation.

All three options have positive and negative elements,
and there is no clear winner in all circumstances. For the
time being, we have selected the conditional approach be-
cause it is simplest and supports the rewriting presentation
from Section 3.1, but the other approaches also have merit.

6.2 Destructuring Patterns

Many pattern-matching systems, including the original pro-
posal for Grace, support “destructuring” patterns that ex-
tract some values from the matched object and do one or
both of matching further patterns against them and binding
them to names. While this can be powerful, binding names
in particular is a significant complexifier for the language
and neither base Kernan nor our extension support it.

It is however possible to create patterns parameterised by
“sub-patterns” they match against some exposed values of
the match target, and to have the pattern require those sub-
patterns to match in order to match itself. For example, this
Point pattern allows subpatterns for the x and y coordinates:

class Point(xPat, yPat) {
method match(o) {
if (IxPat.match(o.x) || lyPat.match(o.y)) then {
failedMatch(o)
} else {successfulMatch(o)}

}
}

A refined pattern LRPoint matching only points in the
lower-right quadrant could then be defined as:

def LRPoint = Point(PositiveNumber, NegativeNumber)

along with specialisations for any other desired constraints,
perhaps using the “be” construct from Section 4.4. Patterns
like Point supporting this behaviour can be easily defined
manually, reducing the value of automated destructuring
and allowing flexibility in exactly what the sub-patterns ad-
dress. We leave name-binding and its semantics in this con-
text for future work. For the very simple single-value case,
in our pattern library we have introduced a chain combina-
tor x » y that composes two patterns such that y must match
the computed result of x.

6.3 Early and Late Binding

When pattern expressions are used as types, our implemen-
tation evaluates them as late as possible: when the method is
called. Doing so enables the especially-dynamic behaviours

DLS ’19, October 20, 2019, Athens, Greece

of some of our case studies: a pattern expression can use
the value of another parameter to construct the pattern, or
what it resolves to can change entirely over the course of
the program’s execution. This also requires every pattern
expression to be evaluated each time a method is called.
An alternative would be to evaluate type annotations early,
at object construction time, and remember the resulting pat-
tern objects to use for each subsequent check. The more dy-
namic behaviours are then not possible, but the type anno-
tations need only be evaluated once for any object, and the
resulting pattern objects may be made available for exami-
nation by other patterns performing deeper checks (for ex-
ample, structural checks of parameter and return types), a
functional advantage not available in our late-bound model.
For the present work we are most interested in the dy-
namic end of the spectrum, but an early-bound variant could
still support many useful patterns and merits exploring.

6.4 Optimisation

Our current implementation is built on top of the straight-
forward (naive) Kernan interpreter, which does not focus on
performance, and adding additional dynamic evaluations as
we have can only slow it further, as we would also expect for
other implementations of the approach. We hope that judi-
cious application of dynamic compilation should be able to
greatly increase the performance, using similar techniques
to Marr et al. [31] applied to more traditional meta-object
protocols, or Roberts et al. [46], Richards et al. [45], and Vi-
tousek et al. [58] to more dynamic type checking as part of
gradual type systems. We expect that some explicit notion
of purity to restrict or detect handling access and modifica-
tion of mutable state [1, 20] will be an important part of such
optimisations. For example, a type test that depends only on
the type object and the structure of the receiver, reading no
other state, and making no externally-visible assignments,
offers a clear opportunity for caching and inlining,.

6.5 Static Checking

Type systems for static languages must obviously be checked
statically. Most type systems for dynamic languages are also
designed to be checked statically — whether that’s “optional”
or “pluggable” types [4] which are ignored or erased before
execution or “gradual” or “hybrid” type systems that incor-
porate both static and dynamic checking into the same lan-
guage [8]. The approach we are advocating here is purely
dynamic. We are interested in extending the benefits of this
approach to incorporate static type checking where practi-
cal: in the limit this could require dependent type checking
or full functional verification, but we expect that there will
be a number of tractable cases that are also useful.

We see the same benefits to dynamically checking these
types as, for example, with dynamic assertion checking as in
Eiffel (or now most imperative languages, including Grace).
We can write types that are effectively dynamic assertions

DLS ’19, October 20, 2019, Athens, Greece

on a single parameter value or return value: our system lets
them be expressed “where they belong” — with the declara-
tion, like any other type — rather than incorporating them
into general method pre- and post-conditions.

For example, rather than expressing a crypto-currency
transfer [11] using only assertions in the body of the method:

method deposit(amt, src) {
assert {amt > 0}
assert {Purse.match(src)}
assert {amt < src.balance}

}

we can express the same conditions, and undergo the same
dynamic checks, by using our dynamic dynamic checks:

method deposit(amt : Number & be > 0,
src : Purse & be.balance > amt)

Of course, Grace’s flexible match/case syntax then enables
those “dynamic type patterns” to be used to direct control
flow, rather than just check arguments or return values as
in Pascal or Eiffel.

7 Related work

Racket’s run-time contracts system [52, 55] permits dynamic
user-defined checking of constraints on argument and re-
turn types. Racket contracts were originally designed to be

layered on top of existing purely dynamically typed code [15].

Special forms for contracts allow Racket functions to be de-
clared along with contract annotations; contracts themselves
are first-class values and annotations are expressions of those
values, so contracts can be defined with the full power of the
language. Racket also supports various kinds of dependent
contracts, contracts for class definitions, and contracts that
manage interactions between multiple objects [10, 48].

Crucially, Racket contracts are higher-order: contracts e.g.
may be applied to formal parameters that expect functions,
and will check the behaviour of the actual functional argu-
ments when those functions are applied. The same is true
for methods when a higher-order contract is applied to an
object. Higher-order contracts can have both a first-order
predicate to test on application, and a projection to specify
how the contract wraps the value it guards. If the contract is
an impersonator [49] then the result of its projection can be
anything, so it is possible to build a contract that returns ar-
bitrary values based on what it wraps. For example, the fol-
lowing defines a contract add1/c that increments the num-
ber it guards:

(define add1/c
(make-contract
#mname 'add1/c
#:first-order number?
#:projection (const add1)))

Michael Homer, Timothy Jones, and James Noble

Consider a procedure spy that acts as identity except that
it also displays the given value before returning it:

(define (spy x) (displayln x) x)

(spy 1) prints 1 and returns 1. Without changing the body
of the procedure, both the input and the output can be mod-
ified by applying a contract to the definition:

(define/contract (spy x)
(— add1/c add1/c)
(displayln x)

x)

Now (spy 1) prints 2 and returns 3.

Higher-order contracts, impersonators, and special con-
tract defining forms mean that Racket contracts are strictly
more powerful than our dynamic pattern types — our am-
bitions are rather more modest. Racket provides additional
syntax on top of the base language for constructing defini-
tions that use contracts, instead of integrating directly with
the existing syntax. This is required because Racket’s base
syntax does not include type annotations, while Grace was
designed to include type annotations from the start. As con-
tracts are intended more for enforcing properties than the
more general matching made available by patterns, Racket’s
existing pattern matching constructs do not naturally inter-
act with contracts either. Racket’s higher-order contracts
depend on Racket’s impersonators for their implementation:
to support Racket’s guarded contract semantics, Grace’s run-
time would need to support similar transparent proxies.

Racket’s implementation also makes a significant effort
to assign blame correctly — that is, to indicate the underly-
ing cause of an error, rather than raising an error only when
a presenting symptom occurs [9, 17, 60]. Correct blame track-
ing in the presence of higher-order contracts contributes to
the execution overhead of gradual typing in Racket [8, 21].
Grace’s transient typechecks, on the other hand, can have a
very low overhead given a suitable implementation [46]. Ex-
perience or empirical studies may be able to investigate the
advantages and disadvantages of each approach in practice.

Many languages, particularly functional languages, have
some degree of pattern-matching support, and some allow
user-defined patterns. Grace patterns draw from Scala [12]
and Newspeak [18], with the surface syntax closer to Scala
and the object model closer to Newspeak. A key behavioural
contrast with Newspeak is that in Grace matching always
begins with the pattern, while Newspeak arguably does the
“right” thing (or at least the pure object-oriented thing) in
that the target of the match is always in control of the pro-
tocol and receives the first message. This difference crys-
tallises a fundamental tension: irrefutable patterns, or un-
matchable objects? Any system can have only one of the
two, and it is key to our system in this work that a pattern
can decide its answer without interference from the target
object: regardless of the object under examination, a pattern

First-Class Dynamic Types

can decide to succeed or fail based on outside conditions, or
can decorate the object without examining it at all, which is
not possible in a Newspeak-style model.

In many functional languages pattern-matching is a core
element and can be used in the vicinity of parameters. For
example, in Haskell, a piecewise function on an algebraic
data type can be defined as:

show (Operator op | r) = (show I) ++ op ++ (show r)
show (Value v) = show v

with the types in parameter position. Haskell view patterns
go further, and allow some transformational code to execute
during matching [43]; these grew from Erwig and Peyton
Jones’s proposed “transformational patterns” [14], and ulti-
mately from Wadler’s introduction of views [59]. View pat-
terns provide a dynamic value output from the input value,
which may be further matched, and partial views encode the
possibility of failure, by use of Maybe. An interesting ele-
ment is the ability of view patterns to use earlier arguments
as patterns themselves:

example :: (String — Int) — String — Int
example f(f > 4)=0
example f(f - v) =v 2

In the above, the function accepts two arguments, a func-
tion from Strings to Integers, and a String, and returns a
Boolean. The argument f is itself evaluated — and given the
next (string) argument — and its return value can then be
checked against further patterns (4) or bound to a name (v).
In this way the function argument is in effect itself a pattern
describing the following argument. While not by design, our
system does allow the same:

method example(f, v : f)

would allow a pattern f as argument to be applied to the
next argument. However, we do not currently permit the
direct further matching of other patterns, which would re-
late to the destructuring feature discussed in Section 6.2,
though it is again possible to simulate with a higher-order
pattern, and in the simple case above with our > combinator:
method example(f, v : f > 4).

Fi’s active patterns [50] can fill a similar niche, but are
somewhat more restricted in what they can use; TypeScript’s
type guards are also similar [32]. Both of these are more
special-purpose mechanisms than Grace’s general pattern-
matching framework.

Multimethod systems in languages with pattern match-
ing also have similarities. Thorn [3], Fortress [47], and OO-
Match [44] all allow patterns in a wide range of positions,
permitting piecewise or partial functions to be defined us-
ing them. These patterns can have a range of effects, but
largely do not fill the “type checking” niche so much as de-
structured piecewise processing. Perl 6’s Signatures [42] can
have similar elements.

DLS ’19, October 20, 2019, Athens, Greece

Some languages with static pre- and post-condition anno-
tations on functions, such as Whiley [41], defer their execu-
tion to run time when they cannot be definitively verified
or falsified statically, but these systems have quite different
goals and presentation to our approach.

Languages in the Pascal tradition [24] at least as far as
Modula-3 [34] have traditionally included integer and enu-
meration subranges that must be checked at runtime. C aban-
doned such exotica, and most subsequent “curly-bracket”
languages followed that example.

The E programming language [33, 61] supports guards on
field declarations and method arguments. Guards are similar
to our first-class patterns in that they can accept a value, co-
erce it to a substitute value, or raise an exception. E includes
syntax for brands (“trademarks”), reflecting over source code
(“auditors”), and numeric relations.

Predicate Dispatching [13] is a generalisation of object-
oriented multiple dispatch, incorporating predicates to con-
trol method selection, in a manner very similar to guards
on patterns in functional languages. Grace is resolutely a
single-dispatch language, but patterns, types, etc, can be used
within match-case constructs to simulate multiple dispatch
if necessary.

X10 supports Constrained Types [38] and Constrained
Kinds [54] to allow methods to depend upon immutable prop-
erties of their arguments. Where possible, X10 can discharge
the proof obligations flowing from the constraints: although
where necessary, X10 will compile checks for constrained
types and kinds and defer checks to runtime.

Redefining the behaviour of fundamental language con-
structs such as types is often considered a reflexive opera-
tion [30]. Grace’s patterns do not have to involve reflexive
programming (e.g. the negativePattern from section 2 just
uses a comparison) although they can when necessary, typi-
cally to scrutinise the object they are matching (e.g. Methods
from section 4.1). Grace’s patterns thus straddle the bound-
ary between meta and base levels; this is true of other parts
of Grace’s design, including control structures, which are
simply defined by methods accepting closures as arguments.

The quintessence of reflexive programming is the Com-
mon Lisp Object System’s Metaobject Protocol (MOP) [27]:
the MOP allows programmers to control, extend, or replace
the way the base object system works, customising object
storage, generic invocations, and the way objects respond to
invocations via method combinations. CLOS’s closest ana-
logue to Grace’s patterns are specializers that take the place
of Common Lisp’s optional dynamic type annotations and
are used to select methods. The standard MOP supports only
classes or equality checks on individual objects as specializ-
ers: the MOP core would need to be extended to support spe-
cializers that could make the kind of general checks that can
be embodied in Grace patterns. While the standard Smalltalk
MOP [19] does not have any analogue of types or patterns,
the PlayOut MOP [56] has explicit meta-models of object

DLS ’19, October 20, 2019, Athens, Greece

memory layouts and slots (instance variables) within those
layouts. Specialised slot metaobjects can implement typed
slots with the same expressive power as Grace instance vari-
ables annotated with patterns, and other more powerful ex-
tensions such as two-way relationships, computed slots, or
even bitfield object layouts. A key distinction here is that
PlayOut slots distinguish between slot values being read
and being written, while Grace patterns annotating slots see
only the value that is flowing through the slot, but not the
direction of that flow. On the other hand, the PlayOut MOP
slots apply to instance variables (fields), while Grace pat-
terns can appear anywhere a type may appear: on instance
variables, but also method temporary variables, arguments,
and results.

Bracha and Ungar’s taxonomy of reflection discusses struc-
tural and behavioural reflection in depth, and using types to
limit access to reflexive facilities, but does not consider re-
flecting on types themselves [5].

CLOS’s spiritual successor, aspect-oriented programming
as embodied by Aspect] [28], doesn’t support the same level
of customisation, but is able to achieve some of the same
goals as Grace’s patterns. While programmers cannot re-
define types in Aspect], they can wrap new “advice” code
around existing method calls or field accesses. The method
or fields can be chosen based upon the types of each ar-
gument position, as well as much more general conditions
such as belonging to a particular class or module, or occur-
ring within the dynamic extent of selected method invoca-
tions. The advice code can access, modify, and replace pro-
gram values, or perform other arbitrary computations. All
this is clearly more powerful than Grace’s patterns; how-
ever, Aspect] cannot target type annotations directly. Types
can be used to intercept field accesses, or method calls where
the type appeared in a particular argument position, or was
the result, but this is not as direct as a Grace pattern being
used as the type itself. In our system patterns can be used
anywhere a type may appear — including inside methods,
on accesses to temporary variables or method parameters —
but Aspect] cannot intercept anything within a method body
itself. Other aspect-oriented languages such as Reflex [53]
have roughly similar abilities and limitations.

Finally, there has also been significant work on depen-
dent types within statically typed functional languages, work
which is now extending to object-oriented languages [7].
The design tradeoffs of such systems are well known: in-
creasing the complexity of the type system can lead to better
error detection and better error messages, and the surety
provided by the type system means that redundant code
paths or error handling code can be eliminated. Dependent
types have also been extended to settings with dynamic or
hybrid type checking [29, 39].

This work in some sense explores a complementary point
in the language design space: dependent, first-order types,
in a dynamic, imperative, object-oriented setting. We find

Michael Homer, Timothy Jones, and James Noble

some of the same tradeoffs certainly apply: types are more
complex, errors can be detected sooner (albeit at runtime)
and error reports can be better — e.g. an integer argument
out of range detected at an object’s interface, rather than
a subsequent indexing error in a collection deep inside the
object. What we did not expect initially is that employing
patterns as first-class dynamic types would offer opportuni-
ties to simplify and shorten method code, and could provide
these benefits even for mutable properties in imperative pro-
grams. A dependent type requiring a mutable list to have a
length of at least three at the entrance to a method, say, still
offers programmers significant value — at least as much as
a method precondition or assertion about the length of the
list. We find type annotations are generally easier to under-
stand than assertions: because annotations are specific to a
particular parameter type, return type, or field declaration,
their scope is clearer and they can be shorter than the corre-
sponding assertions. Type annotations are easier to capture
in interface specifications and documentation, and program-
mers coming from static languages will already know how
to write them.

8 Conclusion

Extending an advanced dynamic pattern-matching system
to support first-class dynamic types allows a programmer
to express — and enforce — exactly the style of checks they
want, in the time, place, and manner of their choosing. From
simple conventional type systems applied only where wanted,
to advanced dependent checks or coercions, a wide range of
checks are available and limited only by what the program-
mer can implement. By leveraging the language’s existing
type annotations, the checks are unintrusive and stay out
of the way on the client side, rather than introducing com-
plex pre- or post-conditions at the method site.

Truly first-class dynamic types introduce great power and
flexibility into the language, coupled with concision, and al-
low the full power of the host language to come to bear in
designing types and defining their semantics.

References

[1] Jean-Baptiste Arnaud, Marcus Denker, Stéphane Ducasse, Damien

Pollet, Alexandre Bergel, and Mathieu Suen. 2010. Read-Only Exe-

cution for Dynamic Languages. In TOOLS. 117-136.

Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.

2012. Grace: the absence of (inessential) difficulty. In Onward! ’12:

Proceedings 12th SIGPLAN Symp. on New Ideas in Programming and

Reflections on Software. ACM, New York, NY, 85-98. http://doi.acm.

org/10.1145/2384592.2384601

Bard Bloom, John Field, Nathaniel Nystrom, Johan Ostlund, Gregor

Richards, Rok Strnisa, Jan Vitek, and Tobias Wrigstad. 2009. Thorn:

Robust, Concurrent, Extensible Scripting on the JVM. In OOPSLA.

[4] Gilad Bracha. 2004. Pluggable Type Systems. OOPSLA Workshop on
Revival of Dynamic Languages.

[5] Gilad Bracha and David Ungar. 2004. Mirrors: design principles for
meta-level facilities of object-oriented programming languages. In
OOPSLA. 331-344.

[2

—

3

[t}

http://doi.acm.org/10.1145/2384592.2384601
http://doi.acm.org/10.1145/2384592.2384601

First-Class Dynamic Types

[6] Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin,
and Richard Yannow. 2013. Seeking Grace: a new object-oriented lan-
guage for novices. In SIGCSE.

[7] Joana Campos and Vasco T. Vasconcelos. 2018. Dependent Types for
Class-based Mutable Objects. In ECOOP.

[8] Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek.
2018. KafKa: Gradual Typing for Objects. In ECOOP.

[9] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. 2011. Correct Blame for Contracts: No More Scape-
goating. In POPL.

[10] Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias
Felleisen. 2016. Oh Lord, Please Don’t Let Contracts Be Misunder-
stood (Functional Pearl). In ICFP.

[11] Sophia Drossopoulou, James Noble, and Mark Miller. 2015. Swapsies
on the Internet: First Steps towards Reasoning about Risk and Trust
in an Open World. In (PLAS).

[12] Burak Emir, Martin Odersky, and John Williams. 2007. Matching Ob-

jects with Patterns. In ECOOP. 273-298.

Michael D. Ernst, Craig Kaplan, and Craig Chambers. 1998. Predicate

Dispatching: A Unified Theory of Dispatch. In ECOOP Proceedings.

[14] Martin Erwig and Simon Peyton Jones. 2000. Pattern Guards and
Transformational Patterns. In Haskell Workshop.

[15] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for
Higher-Order Functions. In ICFP.

[16] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
1994. Design Patterns. Addison-Wesley.

[17] Ronald Garcia. 2013. Calculating Threesomes, with Blame. In Proceed-

ings of the 18th International Conference on Functional Programming

(ICFP’13). 417-428. https://doi.org/10.1145/2500365.2500603

Felix Geller, Robert Hirschfeld, and Gilad Bracha. 2010. Pattern Match-

ing for an Object-Oriented and Dynamically Typed Programming Lan-

guage. Technical Report 36. Hasso-Plattner-Instituts fir Sofwaresys-
temtechnik an der Universitit Potsdam.

[19] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and its Implementation. Addison-Wesley.

[20] Donald Gordon and James Noble. 2007. Dynamic Ownership in a
Dynamic Language. In Dynamic Languages Symposium (DLS).

[21] Ben Greenman and Matthias Felleisen. 2018. A spectrum of type
soundness and performance. PACMPL 2, ICFP (2018), 71:1-71:32.
https://doi.org/10.1145/3236766

[22] Michael Homer, Timothy Jones, James Noble, Kim B Bruce, and An-
drew P Black. 2014. Graceful dialects. In ECOOP (LNCS), Richard
Jones (Ed.), Vol. 8586. Springer, 131-156.

[23] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and
David J. Pearce. 2012. Patterns as objects in Grace. 17-28. https:
//doi.org/10.1145/2384577.2384581

[24] Kathleen Jensen and Niklaus Wirth. 1974. PASCAL user manual and
report. Springer-Verlag.

[25] Timothy Jones, Michael Homer, and James Noble. 2015. Brand Objects
for Nominal Typing.

[26] Timothy Jones, Michael Homer, James Noble, and Kim Bruce. 2016.
Object Inheritance Without Classes. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016) (Leibniz International Pro-
ceedings in Informatics (LIPIcs)), Shriram Krishnamurthi and Ben-
jamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 13:1-13:26. https://doi.org/10.
4230/LIPlcs.ECOOP.2016.13

[27] Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow. 1991. The
Art of the Metaobject Protocol. MIT Press.

[28] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. 2001. An Overview of Aspect]. In
ECOORP.

[29] Kenneth Knowles and Cormac Flanagan. 2010. Hybrid type checking.
TOPLAS 32, 2 (2010), 6:1-6:34.

[13

[t

[18

—

DLS ’19, October 20, 2019, Athens, Greece

[30] Pattie Maes. 1987. Concepts and Experiments in Computational Re-
flection. In OOPSLA.

[31] Stefan Marr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-
overhead metaprogramming: reflection and metaobject protocols fast
and without compromises. In PLDL

[32] Microsoft Corp. 2019. TypeScript Handbook. www.typescriptlang.-
org/docs.

[33] Mark S. Miller. 2006. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. Ph.D. Dissertation. Balti-
more, Maryland.

[34] Greg Nelson. 1991. Systems programming with Modula-3. Prentice-
Hall.

[35] James Noble, Andrew P Black, Kim B Bruce, Michael Homer, and Tim-
othy Jones. 2017. Grace’s Inheritance. Journal of Object Technology
16, 2 (2017).

[36] James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and
Mark S. Miller. 2016. The Left Hand of Equals. In ONWARD! Essays.

[37] James Noble, Michael Homer, Kim B. Bruce, and Andrew P. Black.
2013. Designing Grace: Can an introductory programming language
support the teaching of software engineering?. In 26th International
Conference on Software Engineering Education and Training, CSEE&T
2013, San Francisco, CA, USA, May 19-21, 2013, Tony Cowling, Shawn
Bohner, and Mark A. Ardis (Eds.). IEEE, 219-228. https://doi.org/10.
1109/CSEET.2013.6595253

[38] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian
Grothoff. 2008. Constrained types for object-oriented languages. In
OOPSLA.

[39] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker.
2004. Dynamic Typing with Dependent Types. In IFIP 18th World Com-
puter Congress, TC1 3rd International Conference on Theoretical Com-
puter Science (TCS2004). 437-450.

[40] Geoffrey A. Pascoe. 1986. Encapsulators: A New Software Paradigm
in Smalltalk-80. In OOPSLA.

[41] David J. Pearce. 2017. Rewriting for Sound and Complete Union, In-
tersection and Negation Types. In GPCE. 14.

[42] Perl6.[n.d.]. class Signature, Perl 6 documentation. https://docs.perl6.
org/type/Signature, accessed 13 May 2019.

[43] Simon Peyton Jones. 2007. View patterns: lightweight views
for Haskell. (2007). http://hackage.haskell.org/trac/ghc/wiki/
ViewPatterns.

[44] Adam Richard and Ondrej Lhotak. 2008. OOMatch: Pattern Matching
as Dispatch in Java. In FOOL.

[45] Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Al-
ready Knew That: Leveraging Compile-time Knowledge to Optimize
Gradual Typing. In OOPSLA.

[46] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019.
Transient Typechecks Are (Almost) Free. In ECOOP. 5:1-5:28.

[47] Sukyoung Ryu, Changhee Park, and Guy L. Steele Jr. 2010. Adding
Pattern Matching to Existing Object-Oriented Languages. In FOOL.

[48] T.Stephen Strickland and Matthias Felleisen. 2010. Contracts for First-
Class Classes. In DLS.

[49] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler,
and Matthew Flatt. 2012. Chaperones and impersonators: run-time
support for reasonable interposition. In OOPSLA.

[50] Don Syme, Gregory Neverov, and James Margetson. 2007. Extensible
Pattern Matching Via a Lightweight Language Extension. In ICFP.

[51] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan
Vitek, and Matthias Felleisen. 2016. Is Sound Gradual Typing Dead?.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’16). ACM, 456—468.

[52] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam
Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual Typing for
First-class Classes. In OOPSLA.

https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/3236766
https://doi.org/10.1145/2384577.2384581
https://doi.org/10.1145/2384577.2384581
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.1109/CSEET.2013.6595253
https://doi.org/10.1109/CSEET.2013.6595253
https://docs.perl6.org/type/Signature
https://docs.perl6.org/type/Signature
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

DLS ’19, October 20, 2019, Athens, Greece Michael Homer, Timothy Jones, and James Noble

[53] Eric Tanter, Rodolfo Toledo, Guillaume Pothier, and Jacques Noyé. [58] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Op-
2008. Flexible metaprogramming and AOP in Java. Science of Com- timizing and Evaluating Transient Gradual Typing. CoRR (2019).
puter Programming 72 (2008), 22-30. arXiv:1902.07808

[54] Olivier Tardieu, Nathaniel Nystrom, Igor Peshansky, and Vijay [59] P. Wadler. 1987. Views: A Way for Pattern Matching to Cohabit with
Saraswat. 2012. Constrained Kinds. In OOPSLA. Data Abstraction. In POPL.

[55] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and [60] Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs
Implementation of Typed Scheme. In POPL. Can’t Be Blamed. In ESOP. 1-16. https://doi.org/10.1007/978-3-642-

[56] Toon Verwaest, Camillo Bruni, Mircea Lungu, and Oscar Nierstrasz. 00590-9_1
2011. Flexible object layouts: enabling lightweight language exten- [61] Ka-Ping Yee and Mark S. Miller. 2003. Auditors: An Extensible, Dy-
sions by intercepting slot access. In OOPSLA. 959-972. namic Code Verification Mechanism. http://www.erights.org/elang/

[57] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. kernel/auditors/index.html

2014. Design and evaluation of gradual typing for Python. In DLS.

http://arxiv.org/abs/1902.07808
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
http://www.erights.org/elang/kernel/auditors/index.html
http://www.erights.org/elang/kernel/auditors/index.html

	Abstract
	1 Introduction
	1.1 Contributions

	2 Patterns in Grace
	3 Patterns as Types
	3.1 Semantics
	3.2 Type Declarations and Interfaces
	3.3 Static Type Checking

	4 Case Studies
	4.1 Shallow Structural Type Checks
	4.2 Branded Nominal Types
	4.3 Restricted Subtypes
	4.4 Argument-dependent Patterns
	4.5 Coercion and Clamping
	4.6 Decorators
	4.7 General Pre- and Post-Conditions

	5 Implementation
	6 Discussion
	6.1 Error Locations
	6.2 Destructuring Patterns
	6.3 Early and Late Binding
	6.4 Optimisation
	6.5 Static Checking

	7 Related work
	8 Conclusion
	References

