
Lessons in Combining
Block-based and Textual Programming

Michael Homer and James Noble
Victoria University of Wellington

New Zealand
{mwh,kjx}@ecs.vuw.ac.nz

Abstract Tiled Grace is a block-based programming system backed
by a conventional textual language that allows switching back and
forth between block-based and textual editing of the same code at
any time. We discuss the design choices of Tiled Grace in light of
existing research and a user experiment conducted with it. We also
examine the sorts of task preferred in each mode by users who had
the choice of editing either as blocks or as text, and find both positive
and cautionary notes for block-based programming in the results.

1. Introduction
With Tiled Grace, we aimed to produce a block-based pro-

gramming system that was fully integrated with a conventional
textual language aimed at education, Grace [1–3], to allow
learners to make the transition from blocks to text gradually
over time. At any time, a programmer can with the click of
a button switch from editing their code as blocks to editing it
as text, and back again, as often as desired and for as long as
required. Tiled Grace matches its block syntax exactly with the
syntax of the textual language to reinforce knowledge of both,
and uses animations to show the correspondence between the
two representations while transitioning. Like the textual Grace
language, Tiled Grace aims to be a guiding step for novices
who will move on to other languages or paradigms.

In this paper we explore our specific design choices made
while building Tiled Grace and elaborate on their motivation
in relation to existing work in both visual languages and
educational psychology. We reflect on those choices in ret-
rospect in light of both subsequent literature and a usability
experiment we conducted with the tool. This experiment aimed
to determine:

• whether this ability to switch views would actually be
used, or if users would merely use one or the other;

• whether the novel animated transition connecting the two
views was appreciated, or found confusing or unhelpful;

• whether the error reporting system we had created for the
tiled view was helpful, as it was entirely experimental;

• how engaged users were with the tool, as a system that
users do not enjoy will not be used;

• and any unanticipated difficulties or usage.

DOI reference number: 10.18293/VLSS2017-007

Our experiment with Tiled Grace also offers a unique op-
portunity for analysis. For the first time, programmers had
the opportunity to edit the same program as both blocks and
as text, and particularly to edit parts of the program in each
mode. We perform a new analysis of the dataset in this paper,
examining the choices and revealed preferences of the users
in the experiment, with a further goal of finding:

• which tasks users preferred to perform as text and which
as tiles;

• and how these patterns vary by the experience level of
the user.

From all of this we attempt to draw lessons for the future of
block-based programming. While we see a number of positive
signs for these languages and editors, we also find some
cautionary notes where enthusiasm may not match reality.

In the next section we briefly introduce Tiled Grace at a high
level. After that, we outline the more relevant similar systems,
and then discuss Tiled Grace’s design choices for usability and
learnability in relation to others, and where we made trade-
offs to support our goal of integrating text and blocks. We then
summarise a past usability experiment with the tool, and go on
to present a novel analysis of the actual use of each modality,
before relating and comparing our results and experience with
what has been reported by others. Finally, we attempt to draw
some lessons for block languages from both our experience in
building a hybrid system and our experimental results.

2. Tiled Grace
We will briefly introduce the Grace language generally:

Grace is a textual, object-oriented, block-structured, curly-
brace language aimed at novice programmers, primarily in
tertiary study [1]. It aims to support new programmers in the
first year or two so that they can develop the understanding
required to learn new languages for their later careers, and
includes a number of design choices intended to assist that.
In this work, we are building on Grace, and on an implemen-
tation of Grace, leveraging the existing pedagogical design
and implementation work already carried out on the textual
language.

Tiled Grace [4, 5] presents an editing environment for Grace
programs based on drag-and-drop tiles. The basic structure



is common across drag-and-drop block-based programming
systems. The tiles for a string and variable, for example, appear
as:

Some tiles have holes in them, where another tile may be
placed. For example, a variable assignment tile has two holes:
one for the variable to be assigned to, and one for the value
to be assigned:

The holes are the empty grey rounded-rectangular areas. The
user can drag a tile inside a hole to build up their program.
Tiles can be connected together in sequence as well. To create
a variable and print its value, a var tile and a print tile can
be joined together.

A complete program and its output in progress is shown in
the Tiled Grace interface in Figure 1. The interface is divided
into three main areas: a large workspace area on the left, a
toolbox of available tiles, and text and graphical output areas
on the right.

Tiles may be dropped anywhere in the workspace pane, and
the user can construct different sub-programs in different parts
of the area. Different categories of tile can be selected from
a pop-up menu that appears when using the toolbox. At the
bottom of Figure 1 the dialect selector, run button, and other
interface controls are displayed.

The user can switch to a textual editor at any time. The
transition from tiled to textual view is shown through a smooth
animation where each tile and block of code has a continuous
visual identity throughout the transition.

First the tiles fade out to blocks of the corresponding textual
code, then the blocks glide into place in a linear textual
program, and finally the display switches to editable text. The
entire transition takes just under two seconds. When the user
chooses to switch back to tiles, the same behaviour occurs in
reverse.

Figure 2 shows this transition in progress: while editing the
same program as shown in Figure 1, the user has switched to
a textual view. First the tiles fade out to blocks of the cor-
responding syntax-highlighted textual code, while remaining
in the same physical location (frame (b)). The code blocks
then glide into place (frame (c)), finishing in a linear textual
ordering. Finally, the tiles become fully editable ordinary text,
as shown in frame (d). In this way, the relationship between
tiles and the corresponding part of the textual program is
clearly visible.

Each separate group of connected tiles is regarded as an
independent part of the program. The ordering between them
in the textual display is arbitrary, but consistent across the

lifetime of the program. The displayed text is editable if
the user wishes: they may change the source code, including
adding and removing whole lines or blocks, and then transition
back to the tiled view. When exported, a meaningful comment
is appended to the end of the program stating the coordinates
of each independent “chunk” in pixels, while the chunks are
separated from each other by blank lines; within the system the
location information is stored in memory during a text-editing
session. If a new chunk of code is added, it is assigned a
default location upon switching back to tiles.

Tiled Grace innately supports dialects, a language variation
feature of the textual Grace language [6]. Dialects can provide
new features to the language and new tiles in the toolbox, and
impose additional restrictions on what can be written. Each
module [7] of the program can use a different dialect. Different
dialects can provide drastically different sublanguages, with
their own tiles and rules, within the same overall syntax and
semantics. Because all Grace control structures are defined
as methods to begin with, a dialect can introduce its own
control structures at will and they will fit in with the rest
of the language.

Tiled Grace runs in a commodity web browser, including
both the editor and the backing compiler. It can be accessed
at http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/, and works at
least in recent versions of Firefox, Chrome, and Internet
Explorer/Edge. Tiled code is converted behind the scenes to
textual Grace code, which is then compiled into JavaScript for
execution. The compiler provides a syntax-tree export that is
used to transform textual code back into tiles, or to import
new textual code.

We will discuss other features of Tiled Grace in relation to
the motivations that inspired them in the next section.

3. Existing Block Programming Systems
Several block-based programming languages and systems

are in current use, the most well-known of which is probably
Scratch [8]. We will briefly introduce the systems most rele-
vant to Tiled Grace, focusing on the aspects that relate to this
work. The design dimensions we consider interesting are:

• the role of a textual modality: is there none available,
export to another language, export to and import from
another language, switchable views, or simultaneous dis-
play?

• the sort of block positioning that it allows: freeform
layout or a fixed structure.

• when errors are reported: is it when they are introduced,
when starting to run the program, at runtime, or never?

• how errors are reported: in-place, in a list, one at a
time in a fixed place, or with a marker. (In both of
these dimensions we are interested in syntax, structure,
and type errors, rather than logical errors — the kinds
of error that a reasonably conventional textual language
might report statically).

http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/


Figure 1. Tiled Grace editing a small program in the “turtle graphics” dialect, currently executing

• are different types distinguished by shape, colour, re-
pulsion from incompatible locations, not at all, or some
other means?

• how are dependencies between different parts of the code
(for example, variables and their references) maintained
or indicated: not at all, with an overlay, with automated
scoped renaming, or something else?

Table 1 summarises each system we consider against each of
these dimensions. Tiled Grace has, respectively, a switchable
text view, freeform layout, errors shown both when introduced
and when run, errors displayed in place, repulsion of incom-
patible types, and an overlay showing uses and definitions of
variables and methods along with automated renaming.

3.1. Scratch
The visual side of Tiled Grace is most similar to Scratch [8],

a wholly visual drag-and-drop programming environment with
jigsaw puzzle–style pieces, aimed at novices and children.
Scratch is purely visual: there is no textual representation
of Scratch code at all (although its blocks are all dependent
on textual labels). A key boon of Scratch is its immediate
graphical microworld. A student can instantly see the effects
of running a piece of code, live in front of them. Code can be
modified during execution with instant feedback.

Scratch has been very successful in driving engagement,
particularly with children. New users who might never have

considered programming a computer take to it quickly and
begin exploratory programming with little prompting. We ob-
served this engagement ourselves while working with Scratch
in an outreach programme to a local school, which led to the
conception of Tiled Grace as a way to gain this engagement
within a more complete language. Scratch has also proven
useful for a variety of other purposes, including driving so-
cial interaction between children, promoting storytelling, and
teaching music; we did not focus on these areas for Tiled
Grace and will not address them further in this paper.

Scratch has freeform positioning of blocks anywhere in the
workspace, and uses different block shapes to distinguish types
of value. Scratch does not regard any program as erroneous,
and will attempt to execute any program, skipping over miss-
ing or invalid parts. There is no innate textual form of Scratch,
though a debugging export of an entire program is available
by a hidden option.

3.2. Squeak Etoys

Etoys is a tile-based programming system built on the
Squeak Smalltalk system [9]. Etoys focuses on exploratory
learning in general. Textual code equivalent, but not iden-
tical, to the tiled code can be exported and executed. Tiled
code is always valid, with type errors prevented from being
constructed, while erroneous textual code cannot be activated.
Tiles corresponding to abilities of each item in the world are



(a) (b)

(c) (d)

Figure 2. Frames of the animated transition from tiled to textual view. (a) Tiled. (b) Fade backgrounds and highlight syntax. (c) Glide
tiles towards their positions in the text. (d) Switch to an actual text editor in-place. Transitioning from textual to tiled view shows the same
intermediate states in reverse. The transition from tiles to code, and the movement of code, is smoothly animated.

accessible through a menu on that item, rather than a general
broad menu. An interesting aspect of Etoys is that code tiles
exist within the same world as user objects, and tiles can be
created representing the physical display of blocks of code.
These tiles can be used like any other to manipulate the display
of the code.

3.3. Alice
Alice [10] is similarly microworld-driven, but aimed at

a slightly older audience. Alice has objects in the three-

dimensional microworld that are also objects in the object-
orientation sense, with a primarily event-driven programming
model with common structured-programming features as well.
Alice makes heavier use of menus than Scratch, but also has
a higher degree of enforced structure. These menus provide
on-demand exposure of relevant possibilities and encourage
a different style of experimental programming than Scratch’s
toolbox.

Alice has structured positioning of blocks, with (subtle)
shape indicators for some types. Alice supports exporting to



Table 1. Many existing block programming systems laid out according to their design elements relating to each design dimension.

Language Text Positioning When errors Where errors Types Dependencies
Scratch None Freeform Never n/a Shape Renaming (some)
Etoys Export Freeform Never n/a Repulsion Renaming
Alice Export Structured Intro., start One, list Shape Renaming

Blockly Export Freeform Start Varies Repulsion None
App Inventor None Freeform Intro., start Marker Repulsion Renaming
Pencil Code Switchable Structured Start One No None
BlockEditor Export/Import Structured Start One, list Shape (some) None

GP Export/Import Freeform Never n/a Shape Renaming
Calico Jigsaw Export Freeform Runtime One No None
TouchDevelop None Structured Intro. One Repulsion Renaming

Greenfoot Read-only Structured Intro. Marker n/a None
Tiled Grace Switchable Freeform Intro., start In-place Repulsion Overlay, renaming

Java and reports many errors upon introduction, and some
when starting the program.

3.4. Blockly
Blockly [11] is very similar in ethos to Scratch, with

freeform positioning. Blockly runs in a web browser and
incorporates language variants (what we call dialects), but
in mimicking Scratch also has no editable textual format.
Blockly’s goal is to support developers embedding a visual
language into other systems, both educational and otherwise.

Blockly supports exporting code to a number of languages,
but these exports are not bijective. There is no explicit indi-
cation of which parts of the visual representation correspond
to which parts of the textual representation. Because Blockly
is designed for embedding, a range of different behaviours
can be provided by the embedder, but repulsion from invalid
locations is built in.

3.5. App Inventor
App Inventor [12, 13] is one of a number of Blockly

clients, aimed at teaching. App Inventor was extended with
a textual language, TAIL, semantically equivalent to its block
language [14, 15]. An aspect of the TAIL integration that most
systems do not match is the ability to embed a portion of
textual code within the block view, as a block containing the
text. This feature of TAIL is one that would be particularly
useful in systems when there are parts of the textual language
that the blocks cannot express, but came after our work so we
did not include it.

As well as TAIL, a Python export for App Inventor has
been proposed [16]. Neither is currently in the production
release. App Inventor marks erroneous blocks with a persistent
indicator when the error is detected, and the user can inspect
the block individually for an error report. It has no tracking
of interdependencies beyond renaming variables.

3.6. Droplet and Pencil Code
Droplet [17, 18] and the closely-related Pencil Code [19]

slightly postdate the genesis of Tiled Grace, but also attempt

to bridge blocks and text. Pencil Code concentrates on straight-
line programs in a Logo-like turtle graphics system and simple
audio/drawing programs, and supports editing large subsets of
both CoffeeScript and JavaScript as blocks and text, with both
block and text editing for each language.

Droplet introduced an animated transition that parallels
Tiled Grace’s and is now part of mainline Pencil Code with
many users. Droplet is a general library supporting any lan-
guage with an appropriate adapter, but the main use is in
Pencil Code with CoffeeScript. Text is treated as the primary
representation in Droplet, and it retains complete or nearly-
complete information from the source, including comments
and layout (which Tiled Grace does not only due to technical
limitations of the underlying compiler). Were we creating
Tiled Grace now, we would likely build on the Droplet library
instead of a bespoke system.

Pencil Code reports some errors upon trying to run the
program by way of a popup. Types are not indicated in any
way. Blocks are positioned in a structured fashion, and no
dependencies are tracked. Switching between block and textual
view is possible at any time, except when textual syntax errors
exist.

3.7. BlockEditor

Matsuzawa et al [20] built BlockEditor, an editor for a
visual language called Block that can save the program to
textual Java. The Java code can be edited and automatically
reimported into BlockEditor. In this way a learner can move
between the two languages at will, continuing with the same
code. The Block visual language is not exactly the same as
the Java textual language, but parallels the structure closely
enough for a bijection to exist for the programs in an introduc-
tory course. An experiment over a first programming course
for non-majors found that users did use both modes, with the
rate of Block use trending downwards and Java upwards as a
course progressed, and that higher usage of the visual mode
corresponded with lower self-efficacy.

BlockEditor allows exporting to Java, editing, and re-
importing the code. The block and textual code looks dis-



similar, but is semantically equivalent. Shape is used to mark
some types of sockets.

3.8. GP
GP is a general-purpose blocks programming language

intending to be useful for casual programmers other than
children [21]. GP is principally block-based (building on
Snap! [22]), but experimentally has had an editable text mode
(exposing the underlying LISP-like language), highly con-
densed blocks appearing as text, and text-based insertion of
blocks. The text-like blocks were found to be less jarring
(though less powerful) than exposing export and import of
the underlying data structure had been. Permitting not only
animation but the ability to select intermediate points exposes
the text-block transition to a further degree than other systems,
including Tiled Grace.

3.9. Calico Jigsaw
Calico [23] is a multi-language IDE for introductory pro-

gramming, which includes a visual language called Jigsaw.
Jigsaw uses puzzle pieces and drag-and-drop, and the Calico
system enables exporting the program to other textual lan-
guages, primarily Python. The Jigsaw syntax is distinct from
any textual language and export is to a text file. Jigsaw allows
a degree of freeform positioning of blocks, and reports errors
primarily at run time, with the triggering block marked.

3.10. TouchDevelop
TouchDevelop [24] integrates an essentially textual lan-

guage with an IDE aimed at touch-screen usage, rendering
the program as large blocks. The IDE avoids most use of
textual input by having the user manipulate the syntax tree
itself: the user touches where they want to change and the IDE
presents them with a list of options they can put there. When
the programmer adds a new element the system will prompt
them to fill in any required arguments, like the condition of a
loop. While the syntax is reasonably conventional, there is no
direct textual form of TouchDevelop code, and some aspects,
such as comments, are shown only by typographical features.
Editing always corresponds essentially to textual insertion or
deletion. TouchDevelop has fully structured positioning and
enforces that the program is well-formed whenever possible.

3.11. Greenfoot and Stride
Greenfoot is an introductory programming system with a

two-dimensional microworld, which has recently been ex-
tended with a “frame-based” editor [25, 26]. Like a block sys-
tem, Greenfoot’s frame-based editor presents hierarchically-
related elements of the code as nested indivisible oblongs
with slots for subsidiary elements, but like a textual language
interaction and input is principally with the keyboard. Its Stride
language reuses the concepts of Java and uses textual labels
and structure closely matching Java syntax.

The programmer manipulates the syntax tree at the level
of individual nodes using single-letter keyboard shortcuts, but

some slots use free text entry even for structured elements
(such as method references or loop conditions), so Stride is a
hybrid structured and unstructured editor. These unstructured
fields are the only place that syntactic errors can be introduced,
other than empty mandatory fields. An individual module is
always a well-formed class down to some subsidiary point.

A Java view of the module can be shown at any time,
including while the program is in an erroneous state. This
view is not editable, but inserts the necessary braces, com-
ment markers, and other syntactic structure, while removing
additional labels present in the frame view, with an animated
transition preserving the identity of the elements common to
both views.

3.12. Other systems
A number of other systems, or experimental systems, have

incorporated some level of textual code alongside blocks.
These include a simultaneous-display version of Snap! [27]
showing JavaScript code (not part of mainline Snap! develop-
ment), and systems for defining extension blocks using some
host textual language [22, 28, 29]. We discuss the Snap! ex-
tension briefly below, but consider merely-extensible systems
out of scope for this paper.

4. Designing Tiled Grace
Why build Tiled Grace when Scratch, Alice, and similar

systems already exist? Our design goal for Tiled Grace was
to provide the engagement and lessened syntactic burden of
these existing systems, while introducing the concepts of a
textual language at the same time so that the user could
transition into it at their own pace, in accordance with edu-
cational psychology principles. We built on top of an existing
conventional textual language aimed at education in order to
leverage existing education design work, rather than reinvent-
ing it, building an interface for editing that textual code rather
than a new language. In this section we break down some
motivating aspects of our design, particularly in relation to
other languages and approaches we built on or steered away
from.

4.1. Migration
A key goal in Tiled Grace was to enable its own obsoles-

cence for each user in their own time, where they could move
on to the textual paradigm when ready and with the support
to do so successfully. Building on a general-purpose language
ensured that there was no functional limitation in the tiled
view (as contrasted with microworld-focused languages), but
did not alone ensure that it would be feasible to move on.
Ultimately, Tiled Grace aimed to ease beginning with Grace,
to match the Grace language’s goal of easing beginning with
programming, in both cases as an initial step only.

A well-reported problem with moving on from visual to
textual languages [30], and moving between languages early
in learning in general, is that learners find it difficult to connect
analogous concepts in one language to the other. In particular,



it is known from both educational psychology in general,
and computer science education specifically, that transitioning
between languages early in learning is unhelpful [31], or
indeed any attempted transfer of learning at an early stage
without very careful structuring [32, 33].

For learners to achieve transfer they must be taught the
concepts in a fashion that facilitates transfer [32]. Without
such teaching the knowledge tends to be inert: it can be applied
within its original context, but learners will not generalise from
that context to apply their knowledge elsewhere. Perkins and
Martin found that students learning to program would learn
language constructs inertly, and so had difficulty applying their
knowledge to the act of programming, notwithstanding that
the distance of transfer is minimal in this case [34], while
Dyck and Mayer found that without transfer-focused teaching
learners of BASIC would master the syntax of the language,
but struggle more with semantics than those taught with trans-
fer [35]. An assumption in much teaching is that transfer to
similar domains will occur automatically, but research has not
borne this assumption out in practice [32], instead finding that
instruction must be tailored to assist transfer; in the literature,
this tailoring to target explicit transfer is called bridging [35–
37]

These ideas and experiences were a strong influence on our
design of Tiled Grace. In particular, the animated transition
between visual and textual representation aims to assist bridg-
ing by demonstrating the exact parallel between the two sides.
Similarly, we made the block structure match the syntax of
the textual language, and even display the relevant syntax in-
place on each tile. In this way the user was always seeing
the textual syntax, even while editing blocks, and would gain
some familiarity with what to expect in text. Using text as the
primary representation also ensured a convenient interchange
format for both whole and partial programs.

Restricting ourselves to an exact match with the textual syn-
tax limited what we could do in the blocks. Unlike other visual
block-based languages we could not use additional layout or
components within a single tile to make the block language
simpler (for example, using multiple successive holes without
intervening syntax, adding extra labels, or physically offsetting
or aligning some fields to distinguish them with no other
syntax), because that would break the direct correspondence
with the textual syntax we did not control. This is one area
where our goal of integrating both worlds has made the system
weaker in respect of one approach or the other than a “pure”
block or text language.

Given all of the above, there is a fair question in the
air — why switch to textual languages at all? Aside from
the dearth of professional block languages for those students
who would like a job in future, a key issue in existing
block languages is that using them is exhausting, having high
“viscosity” [13, 38] — the difficulty of making a local change.
Even reading and understanding a complex program with
many nested blocks can be difficult [14]. While designing
Tiled Grace we knew from our own experience that as we had
come to know the system better we had found the drag-and-

drop interface of Scratch increasingly tiresome to use. Moving
to the toolbox, dragging a tile out, switching to a different
pane, finding the next tile, and so on, becomes repetitive and
frustrating over time. Novice users, however, do not find this:
when everything is new, the impact of retrieving each tile is
unnoticed next to the difficulty of the concepts being dealt
with. The toolbox is an excellent discovery mechanism for
novices, the ease of getting something going is a significant
driver of engagement, and the lack of syntax errors removes a
major confound faced by novices. Novices are eventually no
longer quite so novice, and so may want to move on.

A commonly-repeated maxim is that a good programmer
can easily learn a new language. Novices are not good pro-
grammers, however, and a course structure predicated on
making a language transition will likely run into trouble.
Nonetheless, introductory tertiary courses in Scratch and Alice
move on to other languages early, often within the first course,
as programs become too complex for such languages. This
has implications for the design of educational languages more
generally as well: because an educational language explicitly
expects learners to move on to other languages afterwards, the
language must support the learner for long enough to allow
them to build sufficient competence that they can successfully
transfer their skills to another language.

4.2. Event versus Process
One issue with language transitions is that they are es-

sentially “one-way” events: the learner must apply what they
know about the earlier language to the later, but movement in
the other direction is restricted. This is a problem not only for
transferring concepts, but because this “event” model makes
the two sides seem qualitatively different and opposed.

Powers, Ecott, and Hirshfield found that students learning
Alice and a textual language in the same course frequently
felt that Alice was not a “real” language [30]. Students who
struggled with the textual-language part of the course felt that
what they had been doing in Alice “didn’t count” or was “too
easy”, that textual code was “real programming” and were
inclined towards believing that they were not actually capable
of programming; this inclination is harmful in itself. Lewis et
al found that more students rated a picture of random green-
on-black symbols from the film The Matrix as “definitely”
or “somewhat like” programming than an image of the Lego
Mindstorms programming environment (a colourful drag-and-
drop system), despite the fact that those students had been
learning Scratch [39, 40]. These examples are just some of the
motivating concerns we had about visual-textual transitions
when setting out to design Tiled Grace.

By contrast with approaches moving between multiple lan-
guages supporting a single paradigm each, Tiled Grace has
a deliberately permeable barrier: a user can use the visual
language, the textual language, and the visual language again,
even within the same program if desired. As in BlockEdi-
tor [20], permitting both views avoids the transition event
altogether, so that moving from blocks to text becomes a
process rather than an event. A programmer can start to move



Figure 3. Overlaid dependency indicators for variables, methods, and
inherited fields.

to text as early as the first day, and draw out the process as
long as necessary until they are truly comfortable working
with textual code.

Throughout the process, both modes, and all of their past
programs, remain available to the programmer. At all times,
the user can see that what they were doing with blocks is ex-
actly the same as what they are doing with text (or, indeed, the
other way around). Both modalities clearly “count” as much
as the other, and they are clearly both programming. Allowing
movement in both directions necessitated some further trade-
offs (particularly that the programmer can only switch views
when there are no static errors in their program), but we con-
sidered it appropriate to the goal of the language. This textual-
tiled combination was our original grounding conception for
Tiled Grace.

4.3. Relationships and Dependencies

In a block language, and particularly one with arbitrary
layout like Tiled Grace, it is possible for the declarations
and uses of variables and methods to be dispersed around
the screen where they may not be obvious, which could lead
the user to break their program through being unaware of the
dependencies between parts of the code. To preëmpt these in-
cidences, we included two overlays to show the dependencies
between these items.

The top left of Figure 3 shows the mouse pointer hovering
over a variable declaration, with two uses of that variable
highlighted. Similarly, hovering over a variable use site marks
the declaration site. These indications occur anywhere in the
program, for variables, constants, and method parameters. The
top right shows that the “radius” field has been inherited from
“circle” through a similar highlighting (the inheritance system
of the underlying Grace language is object-based and blurs
fields and variables [41]).

Figure 4. Composite image of multiple overlays at once in an
alternative design.

Figure 5. Marking a static scope error in the program where a
variable reference has been moved out of its defined context.

The bottom of the figure shows an unrelated method decla-
ration, circle, with the mouse hovering over it. The overlay
draws a line between the declaration and each use site of the
method, wherever it is in the program. Again, if the user hovers
the cursor over a call site, the line will indicate the declaration.

These indications are especially important to aid new users
unfamiliar with the language or libraries. In our experiment,
we would have people use the system with minimal training,
and it was valuable that they should know the relationships be-
tween different parts of the task programs they were given. We
considered an alternative dependency indicator, in Figure 4,
that used lines for every indicator and showed all applicable
dependencies at once. We found this overlay too busy and
shifted to using the highlights from Figure 3 for everything
but methods, and stopped showing possible assignment sites
of variables altogether. We are not aware of a block language
that successfully shows all of these dependencies, but we
were inspired by the DrRacket editor for the textual Racket
language [42] in the alternative approach.

4.4. Errors
While Tiled Grace was mostly modelled after Scratch, a

key difference between Tiled Grace and Scratch, but much
less so between, say, Tiled Grace and Alice, is that we made
especial effort to provide error detection and reporting in the
visual editor [5]. While in many block languages all programs
can run regardless of missing or broken parts, we require that
the program be well-formed to allow it to run, and prevent
a wide range of errors from entering the program in the first
place. To a large extent this choice is forced upon us by the
need to match with a textual language, but we also believe
that reporting errors early and often is beneficial.



Figure 6. The display of a simple type error the user is making,
where they try to place a string tile somewhere that only numbers
are permitted.

While block-based editing prevents most syntax errors, the
user may still omit filling in required components — for ex-
ample, not specifying a variable name or leaving the hole on
one side of an operator empty — or invalidate the program
in other ways by moving a reference to a variable outside its
scope or filling in an unsuitable value. We included a persistent
graphical indicator of the current validity of the program in the
interface: when it turns red, the program is somehow invalid.
The user may hover over it to highlight all existing errors,
which are labelled in situ with their cause (for example, an
empty hole may have the message “Something needs to go in
here”). These error sites are shown by desaturating all of the
code area except the error sites, and overlaying an associated
error message at the site, as seen in Figure 5. We investigated
a number of approaches to indicating static errors, including
overlaid arrows, persistent adjacent markers as used in App
Inventor 2 [13], and a visible list of errors, but settled on this
approach as a balance of space usage and clarity. The locality
of error reporting and error messages is commonly better than
is achieved in even advanced IDEs for conventional textual
languages, which we feel is a key advantage that block-based
languages can have.

Similarly, while type checking is commonly recognised as
helpful in textual languages, translating that across to visual
languages is challenging. We wanted to catch errors as early
as possible, so it was important that we be able to detect and
report type errors where possible, in a way that the user would
see and understand.

We chose to use a variant on our error overlay approach to
report errors as the user tries to perform the action that would
cause an error, while also preventing the user from doing so.
Any hole can be annotated (in the implementation) with the
types it will accept. Any tile can be similarly annotated with
the type of the object it represents. When the two do not match,
the tile placement is not permitted. Most block languages have
some variation of this “repulsion” behaviour for at least some
of their tiles, but we hope that the simultaneous overlay makes
clear why the tile cannot be placed where desired.

For example, a string tile is annotated with the type “String”,
and both holes in a + tile are annotated as accepting only
“Number”. When the programmer tries to place one into the
other, as in Figure 6, the hole is marked in pink and an error
message displayed nearby: the user will not be able to drop the
tile into the hole. Type errors are in this way prevented from
being introduced into the program in the first place, but the
user also understands why they were not able to do what they

wanted. This sort of live feedback is another aspect of block
languages that is both clearly useful and difficult to replicate
in conventional textual languages.

4.5. Shapes
We thought it would be helpful to indicate to users the

appropriate placement of tiles before they move them. Scratch
partially achieves this effect through its “jigsaw puzzle” pieces:
holes and tiles of different types and roles have different
physical shapes, so a boolean constant or expression will not
fit into a numeric expression. While immediately understand-
able, the approach has flaws, notably that there is a limited
range of sensible shapes that can be readily distinguished and
consequential limit on the number of types that can be in
the system. As well, “multi-type” holes are very difficult: in
Scratch it is not possible to have an array of booleans, only
of its combined string-number type. These constrictions make
this approach problematic to implement in Grace, as it is a
language with many extensible mostly-structural [43] types,
and several places that can hold variables of any type (for
example, variable declarations and equality tests).

Scratch uses shapes for both types and some grammatical
categories, as do a number of other block languages: some
blocks can only appear at the start of a stack (rounded top),
some are statements (notched), and some are values (rounded).
Tiled Grace does not do this: given the underlying language,
every node can be legitimately adjacent to any other, and the
only node that can never appear in any kind of value position
is a method declaration, while variable declarations can appear
in method bodies (which are expressions) but not some other
expression sites. For most nodes, it is their (return) type that
would limit their possible locations, and this would provide the
same effect as grammatical restrictions for these nodes. The
text-as-primary philosophy of Tiled Grace means that a wide
range of possible programs must be representable, particularly
given that dialects may extend or replace even basic control
structures.

We considered colour-coding types, such that our any-
type holes would be a neutral colour, while strings, num-
bers, booleans, other objects, and dialect definitions would
have their own colours which could be matched on both tile
and hole. Similarly to using shapes, however, the number of
readily-distinguishable colours is a limit on the number of
types that can exist, particularly if user-defined types (such as
those of custom objects or classes) are possible.

Other block-based systems not aimed at conventional pro-
gramming, such as Lerner et al’s Polymorphic Blocks sys-
tem [44] and Vasek’s TypeBlocks [45], face some similar ob-
stacles. Polymorphic Blocks uses different shapes to represent
different kinds of entity, but its equivalent of our holes, “ports”,
behave differently. A generic, untyped port is rectangular, but
it may have connected ports elsewhere, each set of which
is highlighted in the same colour. When a shaped item is
connected to one of these ports, the matching ports all take
on the same shape. Similarly to our animated transitions,
Polymorphic Blocks animates each new shape moving from



source to destination. TypeBlocks has a similar philosophy
with different shapes and entities.

Polymorphic Blocks supports generic parametric polymor-
phism in this way, but does not (yet) address the proliferation
of shapes. Within the user experiment Lerner et al conducted,
complex shapes are created only by nesting the small number
of base shapes inside one another, with scaling down when
required. Conceivably some version of this scaling can be
applied more broadly, but we find it difficult to imagine
applying it to complex object types. Designing Tiled Grace,
and observing other work subsequently, has led us to the view
that block languages must make a (fairly early) choice: use
jigsaw-puzzle shapes and have a very restricted number of
types, or use some sort of feedback during an attempted error
but allow unbounded type construction. Neither approach is
innately better or worse in general, but depends on the intended
application domain of the language. Nonetheless, it is a degree
of fragmentation of approach that we would have preferred to
avoid.

5. Experiment
We ran a usability experiment trialling Tiled Grace with 33

participants [5]. In this section we describe the procedure of
the experiment and summarise the results that are relevant to
this paper. An anonymised dataset from the experiment was
published [46], and in Section 6 we perform a new analysis
of published instrumentation data from the experiment to
examine how participants used the different editing modalities.

Participants were primarily students enrolled in early under-
graduate Java courses in the School of Engineering and Com-
puter Science at Victoria University of Wellington, selected so
that they would have some existing familiarity with the idea
of programming. This experiment focussed on usability and
engagement, rather than learning, so true novices were not
considered suitable subjects at this stage. Studying learning
would require pedagogical studies of textual Grace to have
been completed already in order to distinguish the effect of
Tiled Grace, and we were mostly interested in whether the
system design was practical at this point. The experimental
design was guided by some key questions we wished to answer
(as well as by practical considerations, particularly timing).
We wished to find out whether users found the ability to
switch views useful, and also whether they appreciated the
explicit animation connecting the two, a particular novelty of
our approach. We wanted to see whether the error reporting
and type checking we had built was useful to users. As a tool
that users do not enjoy will not be used, we wanted to measure
engagement. Finally, we wanted users to explore different parts
of the system so we could discover any unanticipated problems
or successes.

The experiment took place in March–April 2014. Partici-
pants were asked to use Tiled Grace to write, modify, correct,
and describe programs, while we measured their use of differ-
ent features of the system. Participants also completed ques-
tionnaires about themselves and their use of the system. This

experiment was approved by the Human Ethics Committee of
Victoria University of Wellington.

The experiment focused on collecting data about usability,
engagement, use of the various features, and user behaviour in
this environment. We will first summarise relevant results that
feed into our thoughts on the design of the system and of block
programming systems here; for further details of these results,
and other results from the experiment that we will not rely on
here, see the original study [5, 47]. In Section 6 we present
a novel analysis of people’s revealed preferences for different
modalities and different tasks, analysing the published data set
from the same experiment.

5.1. Procedure
Each participant first completed a pre-questionnaire about

themselves before being given a brief introduction to the
system. The experimental system was instrumented and all
interactions recorded. There were a total of six tasks in the
body of the experiment, presented one at a time by the
experimental system:

Task Initial Description
0 Tiled Warmup – discarded
1 Tiled Change Fibonacci to factorial
2 Tiled Correct errors in this program
3 Tiled Swap behaviours of two objects
4 Text Describe program without running
5 Tiled No specific goal – finish at will
The tasks were chosen to cause every participant to en-

counter both views and the error reporting at least once, and
to have them both understand and modify code. Task 5 was
intended to measure implicit engagement, giving no set task
but telling participants that they could continue to use the
system if they wished, and move on to the post-questionnaire
when ready.

5.2. Summary
We will briefly summarise relevant results from the exper-

iment [5, 47]:

• Participants showed high levels of engagement on multi-
ple metrics, including implicit engagement with the sys-
tem once tasks were complete and Likert-scale feedback
on the post-questionnaire.

• The ability to switch views was widely used, with the
median participant switching six or more times and 75%
at least four.

• One quarter of participants spent more than half their
time in text mode, and one half of them spent less than
a third of their time in text mode.

• More-experienced participants viewed the system less
favourably than less-experienced participants, as shown
in Figure 7.

• The error reporting overlay was the aspect most often
mentioned positively unprompted, by one third of partic-
ipants.



0%

10%

20%

30%

40%

1
Agree

2 3 4
Neutral

5 6 7
Disagree

The system was fun to use

P
er

ce
nt

ag
e 

ch
oo

si
ng

 e
ac

h 
op

tio
n

Technologies used <=10 >10

Figure 7. Participants’ agreement with “The system was fun to use”,
one of a suite of engagement metrics in the experiment, split in half by
a metric of experience relating to past programming and technological
usage.

• Using both views in combination was also identified as
helpful to understanding, mentioned by 9 of 33 partici-
pants and used by more.

• Many users found drag-and-drop frustrating, 40% men-
tioning it unprompted, and around 15% of participants
had debilitating difficulty completing tasks with drag and
drop.

• Most users did not switch to the tiled view in task 4,
which only asked them to comprehend and describe the
code.

This last point was not what had been expected while
planning the tasks. Further analysis showed that of those 15
who did switch, half used tiles for more than 80% of the time
spent on the task, and half for 35% or less, with nobody in
between, and that while more-experienced users were more
likely to switch, they were equally likely to be in either of
those two groups.

This divergence of approach for a simple comprehension
task suggested a difference in underlying preferences of
modality between people, and led us to conduct the novel
analysis presented in the next section, of how participants
actually used each view during the editing tasks.

6. Preferred Modalities
The experiment with Tiled Grace provided a unique op-

portunity to examine which modality — blocks or text — users
preferred for particular tasks. Spurred by discussions at the
Blocks & Beyond workshop in 2015, we conducted an ex-
ploratory analysis of the collected data from the original
experiment, which is publicly available [46], to see what trends
might exist in the use of each mode.

We caution that, because of the overall sample size and the
nature of breaking it down into further subgroups, these trends
can only be suggestive of future research avenues. We did not
have any particular hypothesis about what we might find, but
these results will provide hypotheses for future research.

We focused on two areas specifically. First, we collected all
changes made in “short” sessions in the tiled mode, which
we defined as those logging ten non-automated events or
fewer. We take these short sessions as representative of the
user electing to perform specific actions in the tiled mode
rather than as text. Secondly, we examined all text-editing
sessions. In part, that is a technical limitation — unlike for the
tiled mode, text operations were not discretely logged, only
snapshots of the code — but we found it acceptable because
text was not the default mode for any of the analysed tasks, so
any use of the text mode indicated a deliberate choice by the
user. We considered analysing all tiled sessions as well, but
large sessions inevitably involve assembling whole programs
and are not informative for this kind of analysis, as they reduce
the measurements to counting the number of drags, new tiles,
and so on, that are required to complete the tasks. As a result,
however, some text sessions are much longer in wall-clock
time than a short tiled session could reasonably be, and it is
possible that more complex operations can be performed in
them. A larger study might be able to tease out more detail
from such data, and this exploratory analysis may suggest
avenues to focus on. No participant spent all of their time
on a task in the text view, while several spent all of their time
in the tiled view. In both cases, we did not include tasks 0
(warmup) or 4 (comprehension only) in the analysis.

6.1. Editing as Text
We manually coded all 83 text-editing sessions by compar-

ing the code before and after. Where the user made changes,
and then undid them either themselves or through using our
revert-changes option after a failed compilation, we recorded
that fact mechanically.

Each session could be assigned multiple codes if more
than one operation occurred during the session, but ancillary
modifications as part of a broader code were not included (for
example, “cut and paste” does not entail “delete”). A “before”
and “after” snapshot of the code was mechanically obtained
for each session and the two were compared by hand. The first
author assigned each change a code or codes, in consultation
with a colleague, after a first pass identifying candidate codes
such that all present modifications were covered by a code.
The initial set of candidate codes was taken from the codes



Table 2. Proportions and frequencies of codes of text-editing ses-
sions. Each session could be assigned more than one code. Exp
indicates the proportion of users in this code who were in the more-
experienced half of the sample. 53% of all text sessions resulting in
changes were by more-experienced users.

Freq. Code Prop. Exp.
39 No change 47% 57%
4 Accepted offer to revert 5% 100%
4 Made and undid own changes 5% 67%

10 Change value of string/number 12% 57%
8 Cut and paste 10% 71%
8 Assemble complex code 10% 57%
8 Delete code 10% 43%
6 Change operator 7% 20%
6 Copy and paste 7% 83%
5 Subvert tiled error checking 6% 50%
3 Rename a variable 4% 33%

established for tiled sessions in the next section, and extended
for text-only operations. Codes for operations that could only
exist in tiles, such as drags, were also deleted.

47% of all text-editing sessions (39) made no change to
the code, and seem to have been “just looking”. We had
earlier hypothesised that users may have found the ability
to look at the code in two ways useful simply to break the
monotony and to get an overview of the code, which we
meant primarily as users switching from text to tiles to see
the structure manifested graphically, but it appears that this
may have been the case in both directions. This result may be
a point in favour of “dual view” visual languages that display
text and a visualisation simultaneously. 21 of 33 users (64%)
had at least one empty text session.

43% of all text-editing sessions (36) had modified the code
at the end. 15 of 33 users (45%) had at least one such session.
The remainder of text sessions undid the changes they had
made in one way or another. Table 2 shows the frequency and
proportion in each code. Sessions may be assigned multiple
codes.

The single most common modification was to change the
value of a string or a number. Making such a change in
the tiled view is among the easiest operations to perform
as tiles, so switching to text to perform it seems a very
deliberate choice. Most commonly, participants were making
multiple such modifications at once, which may suggest a
slight preference for textual interaction for repeated similar
tasks.

The second most common operations were cut and paste,
deleting code, and assembling complex code, in a three-way
tie. By assembling complex code we mean producing a mod-
ification that would involve multiple drags and drops into
holes. Cut and paste is exactly the operation that dragging
and dropping tiles performs, so switching to text to perform it
is not an obvious advantage. Deletion is also supported by the
tiled interface, but deleting a single line from within a block
of code was likely easier as text.

We believe that changing operators is an artefact of our
implementation, rather than a meaningful result. The system
sometimes interpreted attempts to select a different operator
in an arithmetic tile as very short drag-and-drop sequences,
which was a problem noted in the experimental results.

The most interesting task people performed in text mode
was subverting tiled error checking. Although rare, it appears
from subsequent analysis of the context that users frustrated
with being unable to make logical, structural, or type errors
in the visual interface switched to text in order to introduce
the code they wanted (for example, adding two strings). This
highlights an asymmetry in our system: the text and visual
editors enforce slightly different rules on their code, which
may have led to confusion. On switching back to tiles, these
programs would have immediately reported errors.

6.2. Editing as Tiles
We categorised short and long tiled-editing sessions me-

chanically, discarding the long ones. Short sessions had ten
or fewer logged interaction events. We also discarded short
sessions at the beginning of Question 2, as this question
presented a broken program that required a small degree of
fixing before it was possible to switch views, and empty
sessions at the end of tasks. Following this, 30% of all tiled
sessions (70/234) were short.

37% of all short tiled-editing sessions (26) performed no
operations at all, and seem to have been “just looking”. These
users may be viewing the structure of their textual program
with a visualisation to help them to understand what they were
doing. 12 of 33 users (36%) had one or more tiled sessions
with no modifications.

The remaining 44 sessions performed some operation. In
contrast to the text sessions, we also recorded interactions with
the system that did not cause modifications to the program (no
such interactions were available in text mode). Each session
was coded for each operation that occurred within it, so
some sessions were coded in multiple categories. Final coding
was performed mechanically, after iterated manual inspection
of uncoded segments created codes and rules to mechanise
them. Table 3 shows the proportions of these sessions in each
category. 19 of 33 users (58%) had one or more non-empty
sessions.

As for text editing, the single most common operation to
switch to tiled view to perform is changing the value of
a string or number tile. It appears that this innocuous, but
ubiquitous, operation is strongly polarising: it is a task that
people will both switch to text to perform, and switch to tiles
to perform.

The second most common operation is to drag a single
block into a hole. This operation corresponds to textual cut-
and-paste, moving code from one place to another.

Switching panes was counted if it occurred two or more
times in combination with other operations other than creating
a new tile, or was the only operation that occurred in the
session. These sessions indicate users looking through the
available functions to find the one they wanted, and are likely



Table 3. Frequencies and proportions of short tiled-editing sessions
in each category. Exp indicates the proportion of users in this code
who were in the more-experienced half of the sample. 37% of all
non-empty short tiled sessions were by more-experienced users.

Freq. Code Prop. Exp.
26 No change 37% 42%
13 Change value of string/number 19% 36%
9 Drag one block into a hole 13% 38%
7 Switch panes in toolbox 10% 67%
5 Meaningless drag 7% 50%
5 Rename a variable 7% 60%
3 See variables in scope 4% 33%
3 Assemble complex code 4% 0%
3 Fix code broken in text mode 4% 33%
1 Append one block to another 1% 0%
0 Delete code 0% 0%
0 Create new tile from toolbox 0% 0%

to be users primarily using text who wanted to know which
methods were available. Some “no change” sessions may
reflect the same use. The provision of a similar toolbox in
the text mode, as in the work of Price & Barnes [48], would
likely avoid these sessions.

Assembling complex code was naturally difficult within the
restriction of a short session (measured in interaction events).
The incidence of this code may not be informative.

Zero short sessions included dragging a tile out of the
toolbox into the workspace.

6.3. Summary
Modifying the value of a string or number was the single-

most common task performed in both modalities, in both cases
commonly as the only operation performed in the session.
This suggests to us that users have divergent views on the
appropriate way to perform this action when given the choice,
but we have no hypothesis as to why. We cross-referenced
these codes with the original experiment’s division of par-
ticipants into more- and less-experienced halves; 62% (8/13)
of such tiled modifications were by less-experienced users,
compared with 40% (4/10) of the textual modifications. These
proportions are roughly in line with the relative usage of the
modes by each group found in the original experiment. There
is an evident difference, but neither is overwhelming and given
the sub-sample size nothing definitive can be said.

A plurality of sessions in both modes were empty, where
the user performed no actions and simply looked at their code.
These sessions were common among both more- and less-
experienced users. We take this as partial validation of the
hypothesis put forth previously [5, 47] that simply having two
drastically different views available is found useful in itself.

Participants attempted to use the other view to work around
limitations of the principal view they were using, for both good
and ill. The interaction with operator tiles was a flawed design,
and many users used the text view to make modifications they
had difficulty with in the tiles, which was a positive use of the

functionality. The enhanced error checking possible in the tiled
view, which prevented many type and structural errors even
being introduced, was an obstacle to some users who then used
the text view to construct their broken programs, a negative
use of time that could have been spent establishing why the
code was not allowed. Neither technique was the intended use
of the system, however, and both represent flaws or at least
limitations in the approach taken by Tiled Grace.

Many participants opted to use textual cut and paste for
operations that could easily be carried out by drag and drop.
It may be that users are conditioned to perform such “moving”
operations as text, which may also explain the high proportion
of string or number modifications performed in the text mode.

Further research is required to confirm or refute all of these
findings, particularly those with no a priori reason to expect
them.

7. Discussion
A very common issue that has been encountered in intro-

ductory visual languages is that learners do not consider them
“real” programming languages [30, 39, 40]. In some cases, the
fact of being “easier” than text was interpreted to mean that the
visual language did not “count” as programming, particularly
when textual programming was later found challenging. Pre-
conceived ideas about what is and is not programming, or what
kinds of programming are or are not useful, can lead to block-
based systems being regarded negatively by both current and
prospective users. DiSalvo [49] found that learner perceptions
of visual and textual programming systems varied according
to the ultimate career goals of the user. Users with an interest
in a programming career were more inclined towards a textual
language than Alice, while those interested in media and
design careers inclined the other way. For some, finding the
textual language harder was in fact a point in its favour.

In Tiled Grace we aimed to avoid the perception that a
block-based language was not “real” by having the block
and textual language exactly match one another and pre-
sented equally. Experimentally, we did see users deploy both
modes, and seem to understand the connection between the
two. Similar to DiSalvo [49], and like Weintrop [50] and
Matsuzawa [20] as well, however, we found that a number of
participants very strongly preferred the textual mode and were
even scornful of the tiled mode and its presence, to the point
of using text almost exclusively even when the system design
made it more difficult to complete tasks in that way. Three
participants explicitly noted unprompted that they were pre-
disposed to dislike GUIs. Other users exclusively used blocks.
On one level, the fact that they were able to do so within the
same system speaks to a more inclusive environment than a
single-paradigm approach allows. On another, it seems that the
presence of the other mode was at best neutral and possibly
a net negative in overall perception for both groups of users,
and might be off-putting. Neither group was more than 15%
of users in our study. We did not ask about future goals in
our experiment, but our more-experienced users (representing



the closest proxy we have to those whose self-conception is
as programmers) were notably less positive about the sys-
tem than less-experienced users. Our — somewhat informal —
sense from observation and feedback in the experiment is that
perceiving the block language as a toy, and thus the system as
a whole as one too, played into this view. These perceptions
may be a concern for the targeting and marketing of block
languages.

Our experiences with Tiled Grace are paralleled by the
experiment of Weintrop and Wilensky [27, 51] about multi-
modal block-text environments. Their study involved high-
school students in three conditions (blocks only, blocks and
read-only JavaScript text, blocks and modifiable JavaScript
text) who began in Snap! [22] and subsequently moved on
to (textual) Java, over a ten-week course.

One facet of the study involved student performance over
different concepts and modalities [52], having been exposed
to both graphical Snap! and textual Java across the course and
completing commutative assessments with parallel questions.
For most concepts, students performed better with graphical
code than textual. Students performed equally well on compre-
hension tasks regardless of modality, while in our experiment
when given a pure comprehension task and a choice of views,
most participants did not deviate from the default text view,
despite overall preferring the tiled view in the experiment as
a whole.

There may be no particular advantage in understanding code
to either a block or textual view, despite blocks making the
structure of the code explicit, at least for the relatively small
programs in use in both experiments. What advantages do
accrue from block editing would then all come from easier
construction of programs, rather than easier understanding.
Such a result does not seem to match with the self-reporting
of participants in either study or elsewhere in the literature,
and so needs further investigation.

When Weintrop’s students were asked to compare Java and
Snap!, those who expressed a view overwhelmingly said that
block-based programming was easier than text, regardless of
which condition they had originally been in. In our experiment,
similarly, participants regarded the tiled view as somewhat
easier to use, although not by the same 80% margin. Weintrop
was able to conduct interviews with participants to attempt
to establish the reasons behind these results, which can shed
some light on our own findings.

Weintrop’s analysis of the interviews in the study investi-
gates (among other things), just why blocks were found easier.
A number of points correspond to our study, and to how we
found that participants used each mode in Section 6. One that
did not, however, was that “blocks are easier to read” because
the language of blocks was different and more “English”.
We believe that this limitation is quite significant: to find
out whether blocks, themselves, are helpful, the languages
should match as closely as possible. With Tiled Grace, where
they match exactly, we did find that users regarded the tiled
view as making it easier to deal with syntax, matching those
from the Weintrop experiment who mentioned punctuation,

balanced brackets, and other syntactic noise as reasons they
found blocks easier. It is important to be careful not to conflate
elements of a block language with elements of the block
paradigm itself (albeit that this is very difficult to avoid with
current systems).

Our blocks did not have different shapes for different data
types, but were approximately colour-coded by topic (for
example, variable declarations and variable references were
similar shades). We had wished to make them shaped to
complete the “jigsaw puzzle” metaphor, but were unable to do
so with the wide range of types possible in a general-purpose
language. The Weintrop study finds that these shapes were one
of the key reasons that users said they found blocks easier to
use: the shapes of a block and hole communicate whether
they are compatible, while top and bottom connectors made
sequencing explicit. Our type checker would disallow many
invalid combinations, but only after the user had tried to per-
form it, and in some cases they would then switch the textual
view (which had less stringent immediate checks) simply to
create the code they wanted. It is possible that, had the blocks
been obviously incompatible, users would not have attempted
this to begin with. On the other hand, as Weintrop found, the
puzzle-piece metaphor can lead to confusion among learners
who expect there then to be “a” solution to a problem, as in
a jigsaw, rather than many possibilities. This expectation did
not noticeably appear in our experiment, but some participants
did express that they thought they had completed some tasks
“wrong”.

Weintrop and Wilensky’s other two reasons, that composing
code was easier or more accessible as blocks, and that blocks
were memory aids, were both borne out in our study. The pane-
switching tiled sessions from Section 6, and likely some of the
empty sessions, appear to be exactly using the block side as
a memory aid. We also observed “bottom-up” construction of
complex expressions to be common, often using an out-of-the-
way corner of the workspace to build up the expression before
moving it into place. Because Tiled Grace enforced scoping
of variable-reference tiles (necessary, as the textual language
has traditional lexical scoping, and in fact intended to help by
offering a list of available names), assembling code in this way
was sometimes not possible, to the frustration of the user. One
of the trade-offs in integrating the textual and block languages
that we had not considered was that this sort of “inside-out”
construction, which is very natural and widely-reported [53] in
block languages, would be stymied by error prevention in the
textual language. Meerbaum-Salant et al. have argued that this
style is in fact a “bad habit” [53], and that it has a longer-term
detrimental effect on learners. It is not obvious whether this
aspect of Tiled Grace is helping or hindering, and precisely
what the long-term goals are may again be important.

A later experiment by Weintrop and Holbert [50] used
Pencil Code as a switchable dual-mode environment, with
the goal of finding out how each mode was used, as in our
analysis in Section 6. Unlike in our results, the majority of
switches to blocks were to add new blocks to the program,
and empty block sessions were no more than 5.7% of the



total. Moving a block inside another was somewhat common
in both experiments. While we considered short sessions as a
whole, Weintrop and Holbert looked only at the first action
taken after a change of modality. Given this, it is remarkable
that so many more sessions created new tiles. Weintrop and
Holbert note that two-thirds of the time a new block was added
in this way, and 86.7% of the time a control block was added,
it was the first time that block had been used. The nature of
our experiment, where starter programs were already provided,
may have limited the number of occasions to add a block in
this way. The most significant difference between the subject
populations for our experiment and theirs is that our users
were adults who primarily had past programming experience,
while Weintrop and Holbert’s were a mix of novice learners
in high school and graduate students outside of programming
(the groups are not separated in this part of the analysis).
It may also be that these populations are the cause of these
different observations, or that the nature of the language affects
user behaviour in some way (in particular, Tiled Grace had a
significantly lower total number of distinct blocks available).

Similar to in our original experiment, Weintrop and Holbert
find a wide range of levels of use of each modality, with a
trend for increased text use to go along with higher degrees
of experience. They also note some users who strongly prefer
either blocks or text almost exclusively, as did we. These
results are in line with the goals of Tiled Grace’s design, and
Weintrop and Holbert suggest that they provide support for the
dual-modality approach as providing for “low-threshold/high-
ceiling” programming environments.

Matsuzawa et al.’s experiment using both Java and Block,
which translates to and from Java, in an introductory pro-
gramming course finds a wide range of different levels of
use of textual and block editing [20]. The BlockEditor system
supports exporting to Java and importing from Java, but makes
no particular explicit mapping between the two in itself; it does
not appear that this caused any widespread trouble for learners,
which may suggest that Tiled Grace’s emphasis on making the
mapping manifest through animation is unnecessary, or it may
be a reflection of the teaching structure employed.

Across a fifteen-week course students tended to use less of
the block view as time progressed, but with highly varied rates
of change between students as well as individual fluctuations.
The rate of backsliding and inter-student variation supports
our goal of making the transition be a process, rather than an
event, as many students would have been left behind given
any particular transition point. It is notable, however, that
after a large task in the eigth week the rate of block usage
did drop dramatically, and stayed low, so it is possible that
there is a distinguished point where text becomes preferable.
It is also possible that using the text view out of necessity,
when the block view of a large program has become unwieldy,
acclimatises learners to it, and simple exposure is all that is
required to cause the text modality to take over.

Experiments using TouchDevelop with secondary-school
students [54] found that students were rapidly able to develop
non-trivial mobile applications in that environment. Long-term

users were able to produce advanced applications with no for-
mal instruction other than sample code, while shorter sessions
showed good performance regardless of programming back-
ground. One posited explanation is that, because TouchDe-
velop’s tap-based interface surfaces the available actions in a
given context on demand, it promotes experimentation with
a wider range of options with immediate feedback. Similarly,
users will less often need to search for the block they want
to use if TouchDevelop presents what it expects they may
need automatically. The “memory aid” activities from our and
other systems should not need to occur in TouchDevelop, and
some sort of context-aware suggestion mechanism would be
an advantage to the user of a block language.

Our experiment found that a sizable proportion of par-
ticipants (around one in six) had debilitating trouble using
drag-and-drop interaction with the system, despite everyday
use of mice and keyboards. Tiled Grace relies on the mouse
pointer being over a drop target, which we had taken as
the standard drag-and-drop behaviour, and these users found
that task very difficult. Other contemporary block languages
have similar behaviours: Scratch and Blockly use a point
in the upper left of the bounding box of a tile instead of
the mouse pointer, while Pencil Code uses a similar point
in combination with a Euclidean distance metric to choose
the closest target. Neither of these seems obviously more
intuitive. We have not seen studies reporting on this significant
of a difficulty dragging in block-based languages, but have
anecdotally observed tiles going otherwise than where they
were wanted in all of these systems. Past human-computer
interaction research [55–57] has found that point-and-click
interfaces may involve fewer errors and be faster than drag-
and-drop, although recent research with children [58] has
shown that they may both expect and prefer drag-and-drop
interfaces. Ludi [59] has noted accessibility problems with
contemporary block languages for users with motor or visual
impairments. These are a significant issue that is fundamental
to the interaction paradigm most of these languages currently
use, and which is only exacerbated by the observations in our
experiment. Other block-like structured editing paradigms, as
in Kölling et al’s “frame-based” Stride [25] language, or the
“point-and-tap” TouchDevelop [24] interface that requires no
continuous action, may be more suitable. Of the drag-and-drop
approaches, Pencil Code’s appears the most usable, but still
relies on free movement of the mouse.

When Powers, Ecott, and Hirshfield experimented with tran-
sitioning from Alice to Java (with BlueJ) in an introductory
programming course [30] they observed that many students

were intimidated by the textual language and
syntax, and seemed to have a difficult time seeing
how the Java code and the Alice code related

even when working with exactly corresponding Alice and
Java code. In our experiment, which used exactly parallel lan-
guages in both textual and visual modes, and in Matsuzawa et
al’s [20], which did not, understanding the relation between the
two did not seem to be an especial problem, but intimidation



by text was evident. Students in Matsuzawa et al’s study
with lower self-rating of their skill avoided the text view, but
none of our self-rating questions showed a strong correlation
with use of either mode; we did not have a generic “rate
your programming skill” question, however. Weintrop’s earlier
experiment appears as though a similar trend may exist, but
explicit data is not available. As our experiment was much
shorter than any of the others, the trend may not have had
time to emerge.

8. Lessons and Conclusion
We see mixed success and weakness in our experiences and

results working with block-based languages. We will attempt
to distill some key lessons from our experience with Tiled
Grace that are applicable to block languages more broadly.
These lessons draw from our and others’ experimental results
and observations, and from our experience designing and
building an integrated block-text programming system.

A positive sign is that our experiment, and others’, showed
strong engagement with a predominantly block-based envi-
ronment, and that even when given the choice to use text
users in an unfamiliar language largely preferred to use
the blocks. This held even though most of our users had some
familiarity with text programming in other languages already.

One reason that some block systems have been found easier
to use is that the language of the blocks is more accessi-
ble, or more “English”, than conventional languages. This is
a language-design element, rather than a property of block
systems, and is a natural confound when assessing how helpful
a system is, so it is important to separate the effects of the
language and the interaction paradigm when evaluating
block systems. Tiled Grace’s use of identical block and text
languages is one method of keeping this distinction clear, but
designing textual languages that incorporate the benefits of
block languages is another approach.

We also found an approach to reporting errors in block-
based programs that was effective and well-regarded by ex-
periment participants, including unprompted positive mentions
and strong signs of effectiveness at communicating the issue
identified. This approach could easily be applied to other
languages in the same model, while conventional textual lan-
guages would find it difficult to provide the same level of
immediacy. Immediate in-situ feedback is effective and
much easier in block languages than text. We recommend
incorporating some similar form of error reporting into all
block-based languages, unless there is a strong pedagogical
reason to turn ill-conceived programs into runtime debugging
exercises.

Less positively, we found that more-experienced users
were substantially less favourable towards a block-based
environment than less-experienced users. While for purely
novice systems this may not be an issue, it is a significant
caution for systems aiming at broader markets or professional
use. Even novices will become more experienced over time,
and losing engagement is a problem for, at least, retention.

We believe that supporting people to move on to other
paradigms (whether through our and Pencil Code’s dual-mode
approach or otherwise) is crucial to successfully deploying
block languages for programming education (while general-
purpose or domain-specific block languages may not wish to
do so). The experience-engagement results of the previous
paragraph are one reason why, but more important are the
educational psychology aspects discussed in Section 4.1. Thus,
block languages for programming education must have an
exit strategy. Course structures predicated on simply starting
in a block language and moving on to a more conventional
language after a few months are fraught with danger unless
significant care — and time — is put into providing explicit
bridging instruction to help learners map concepts from one
world to the other. Languages that do not facilitate this process
are doing their users a disservice, but allowing and encourag-
ing mixed use appears effective.

While it is well-known that experienced users can find the
back-and-forth dragging of Scratch and other block languages
frustrating, it has been less noted that drag-and-drop visual
editing is a significant problem for some users, even those
without physical limitations on doing so. In addition, drag
and drop is much less accessible than text editing for anybody
unable to use a mouse easily, or to see what is on screen. If
block languages aim to democratise programming, they cannot
do so by excluding already-marginalised people further. Block
paradigms that are not dependent on drag and drop may be
more suitable for everybody.

Finally, we found that users made heavy use of our view-
switching ability simply to see “the other side”: they did not
always want to make changes there. These results emerged
from the instrumentation in our experiment and from free-text
feedback. It is not all-or-nothing: providing multiple views
of code helps users be more comfortable with it, even if
the code is not edited (or editable) in one view or another.

Block programming is currently undergoing substantial
growth, but we should not lose sight of potential negative
aspects. Long-term thinking is required in their design and
use, and experimentation to determine which aspects of them
are helpful, and which are ancillary or negative.

References
[1] A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and

R. Yannow, “Seeking Grace: A new object-oriented language for
novices,” in Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’13. New York, NY, USA:
ACM, 2013, pp. 129–134.

[2] A. P. Black, K. B. Bruce, M. Homer, and J. Noble, “Grace: The absence
of (inessential) difficulty,” in Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, ser. Onward! ’12. New York, NY, USA:
ACM, 2012, pp. 85–98.

[3] J. Noble, M. Homer, K. B. Bruce, and A. P. Black, “Designing grace:
Can an introductory programming language support the teaching of
software engineering?” in Software Engineering Education and Training
(CSEE&T), 2013 IEEE 26th Conference on. IEEE, 2013, pp. 219–228.

[4] M. Homer and J. Noble, “A tile-based editor for a textual programming
language,” in Proceedings of IEEE Working Conference on Software
Visualization, ser. VISSOFT’13, Sept 2013, pp. 1–4.



[5] M. Homer and J. Noble, “Combining tiled and textual views of code,”
in Proceedings of IEEE Working Conference on Software Visualization,
ser. VISSOFT’14, Sept 2014.

[6] M. Homer, T. Jones, J. Noble, K. B. Bruce, and A. P. Black,
“Graceful dialects,” in ECOOP 2014 — Object-Oriented Programming,
ser. Lecture Notes in Computer Science, R. Jones, Ed. Springer
Berlin Heidelberg, 2014, vol. 8586, pp. 131–156. [Online]. http:
//dx.doi.org/10.1007/978-3-662-44202-9_6

[7] M. Homer, K. B. Bruce, J. Noble, and A. P. Black, “Modules as
gradually-typed objects,” in Proceedings of the 7th Workshop on
Dynamic Languages and Applications, ser. DYLA ’13. New York,
NY, USA: ACM, 2013, pp. 1:1–1:8.

[8] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009.

[9] A. Kay, “Squeak Etoys authoring & media,” Viewpoints Research Insti-
tute, Research Note, 2005.

[10] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in intro-
ductory computer science,” in ACM SIGCSE Bulletin, vol. 35, no. 1,
2003.

[11] Blockly Project, “Blockly web site,” https://code.google.com/p/blockly/.

[12] D. Wolber, “App Inventor and real-world motivation,” in Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’11. New York, NY, USA: ACM, 2011, pp. 601–606.

[13] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in app inventor 2,” in IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), July 2014, pp. 129–132.

[14] K. Chadha, “Improving the usability of App Inventor through conversion
between blocks and text,” Honors Thesis, Wellesley College, 2014.

[15] K. Chadha and F. Turbak, “Improving App Inventor usability via
conversion between blocks and text ,” Journal of Visual Languages &
Computing, vol. 25, no. 6, p. 1042–1043, 2014, Distributed Multimedia
Systems (DMS2014) Part I.

[16] P. Guo, “Proposal to render Android App Inventor visual code blocks
as pseudo-Python code,” https://people.csail.mit.edu/pgbovine/android_
to_python/.

[17] D. Bau and D. A. Bau, “A preview of Pencil Code: A tool for
developing mastery of programming,” in Proceedings of the 2nd
Workshop on Programming for Mobile Touch, ser. PROMOTO ’14.
New York, NY, USA: ACM, 2014, pp. 21–24.

[18] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, pp. 138–144, Jun.
2015.

[19] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil code:
Block code for a text world,” in Proceedings of the 14th International
Conference on Interaction Design and Children, ser. IDC ’15. New
York, NY, USA: ACM, 2015, pp. 445–448.

[20] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai, “Language
migration in non-CS introductory programming through mutual
language translation environment,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’15. New York, NY, USA: ACM, 2015, pp. 185–190.

[21] J. Mönig, Y. Ohshima, and J. Maloney, “Blocks at your fingertips:
Blurring the line between blocks and text in GP,” in IEEE Blocks and
Beyond Workshop, 2015.

[22] B. Harvey and J. Mönig, “Bringing “no ceiling” to Scratch: Can one
language serve kids and computer scientists?” in Constructionism 2010.

[23] D. Blank, J. S. Kay, J. B. Marshall, K. O’Hara, and M. Russo, “Calico:
A multi-programming-language, multi-context framework designed for
computer science education,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’12. New
York, NY, USA: ACM, 2012, pp. 63–68.

[24] R. N. Horspool, J. Bishop, A. Samuel, N. Tillmann, M. Moskal,
J. de Halleux, and M. Fähndrich, TouchDevelop: Programming on the
Go. Microsoft Research, 2013.

[25] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’15. New York, NY, USA: ACM, 2015, pp.
29–38.

[26] N. C. C. Brown, A. Altadmri, and M. Kölling, “Frame-based editing:
Combining the best of blocks and text programming,” in Fourth In-
ternational Conference on Learning and Teaching in Computing and
Engineering, ser. LaTiCE ’16, 2016.

[27] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: Students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children, ser. IDC ’15. New York, NY, USA: ACM, 2015, pp.
199–208.

[28] Playful Invention Company, “Picocricket reference guide, version 1.2a,”
http://www.picocricket.com/pdfs/Reference_Guide_V1_2a.pdf.

[29] S. Dasgupta, S. M. Clements, A. Y. idlbi, C. Willis-Ford, and
M. Resnick, “Extending Scratch: New pathways into programming,” in
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2015.

[30] K. Powers, S. Ecott, and L. M. Hirshfield, “Through the looking
glass: Teaching CS0 with Alice,” SIGCSE Bulletin, vol. 39, no. 1, pp.
213–217, Mar. 2007.

[31] D. B. Palumbo, “Programming language/problem-solving research: a
review of relevant issues,” Review of Educational Research, vol. 60,
no. 1, pp. 65–89, 1990.

[32] D. N. Perkins and G. Salomon, “Teaching for transfer,” Educational
Leadership, vol. 22, no. 32, 1988.

[33] A. Robins, “Transfer in cognition,” Connection Science, vol. 8, no. 2,
pp. 185–204, 1996.

[34] D. N. Perkins and F. Martin, “Fragile knowledge and neglected
strategies in novice programmers,” in Papers Presented at the First
Workshop on Empirical Studies of Programmers on Empirical Studies
of Programmers. Norwood, NJ, USA: Ablex Publishing Corp., 1986,
pp. 213–229.

[35] J. L. Dyck and R. E. Mayer, “Teaching for transfer of computer program
comprehension skill,” Journal of Educational Psychology, vol. 81, no. 1,
1989.

[36] V. R. Delclos, J. Littlefield, and J. D. Bransford, “Teaching thinking
through Logo: The importance of method,” Roeper Review, vol. 7, no. 3,
1985.

[37] D. H. Clements and D. F. Gullo, “Effects of computer programming on
young children’s cognition,” Journal of Educational Psychology, vol. 76,
no. 6, 1984.

[38] T. Green and M. Petre, “Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework,” Journal of
Visual Languages & Computing, vol. 7, no. 2, p. 131–174, 1996.

[39] C. Lewis, S. Esper, V. Bhattacharyya, N. Fa-Kaji, N. Dominguez,
and A. Schlesinger, “Children’s perceptions of what counts as a
programming language,” Journal of Computing Sciences in Colleges,
vol. 29, no. 4, pp. 123–133, Apr. 2014.

[40] C. M. Lewis, “How programming environment shapes perception,
learning and goals: Logo vs. Scratch,” in Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’10. New York, NY, USA: ACM, 2010, pp. 346–350.

[41] T. Jones, M. Homer, J. Noble, and K. Bruce, “Object inheritance without
classes,” in 30th European Conference on Object-Oriented Programming
(ECOOP), 2016.

[42] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen, “Languages as libraries,” in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011,
pp. 132–141.

[43] T. Jones, M. Homer, and J. Noble, “Brand objects for nominal typing,” in
29th European Conference on Object-Oriented Programming (ECOOP),
2015.

http://dx.doi.org/10.1007/978-3-662-44202-9_6
http://dx.doi.org/10.1007/978-3-662-44202-9_6
https://code.google.com/p/blockly/
https://people.csail.mit.edu/pgbovine/android_to_python/
https://people.csail.mit.edu/pgbovine/android_to_python/
http://www.picocricket.com/pdfs/Reference_Guide_V1_2a.pdf


[44] S. Lerner, S. R. Foster, and W. G. Griswold, “Polymorphic blocks:
Formalism-inspired ui for structured connectors,” in Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’15. New York, NY, USA: ACM, 2015, pp.
3063–3072.

[45] M. Vasek, “Representing expressive types in blocks programming lan-
guages,” Honors Thesis, Wellesley College, 2012.

[46] M. Homer, “Tiled Grace experiment data,” Available as
tiled-grace-experiment.tar.bz2 attached to [47] in
the research archive of Victoria University of Wellington at
http://researcharchive.vuw.ac.nz/handle/10063/3654., 2014.

[47] M. Homer, “Graceful language extensions and interfaces,” Ph.D. disser-
tation, Victoria University of Wellington, 2014.

[48] T. W. Price and T. Barnes, “Comparing textual and block interfaces in
a novice programming environment,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, ser. ICER ’15. New York, NY, USA: ACM, 2015, pp.
91–99.

[49] B. DiSalvo, “Graphical qualities of educational technology: Using drag-
and-drop and text-based programs for introductory computer science,”
IEEE Computer Graphics and Applications, vol. 34, no. 6, pp. 12–15,
Nov 2014.

[50] D. Weintrop and N. Holbert, “From blocks to text and back:
Programming patterns in a dual-modality environment,” in Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, ser. SIGCSE ’17. New York, NY, USA: ACM, 2017, pp.
633–638.

[51] D. Weintrop, “Modality matters: Understanding the effects of program-
ming language representation in high school computer science class-
rooms,” Ph.D. dissertation, Northwestern University, 2016.

[52] D. Weintrop and U. Wilensky, “Using commutative assessments to
compare conceptual understanding in blocks-based and text-based

programs,” in Proceedings of the Eleventh Annual International
Conference on International Computing Education Research, ser. ICER
’15. New York, NY, USA: ACM, 2015, pp. 101–110.

[53] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of
programming in scratch,” in Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’11. New York, NY, USA: ACM, 2011, pp.
168–172.

[54] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, J. Bishop,
A. Samuel, and T. Xie, “The future of teaching programming is on
mobile devices,” in Proceedings of the 17th ACM Annual Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’12. New York, NY, USA: ACM, 2012, pp. 156–161.

[55] K. M. Inkpen, “Drag-and-drop versus point-and-click mouse interaction
styles for children,” ACM Transactions on Computer-Human Interaction,
vol. 8, no. 1, pp. 1–33, Mar. 2001.

[56] D. J. Gillan, K. Holden, S. Adam, M. Rudisill, and L. Magee, “How
does Fitts’ law fit pointing and dragging?” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’90. New York, NY, USA: ACM, 1990, pp. 227–234.

[57] I. S. MacKenzie, A. Sellen, and W. A. S. Buxton, “A comparison of
input devices in element pointing and dragging tasks,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’91. New York, NY, USA: ACM, 1991, pp. 161–166.

[58] W. Barendregt and M. M. Bekker, “Children may expect drag-and-drop
instead of point-and-click,” in CHI ’11 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’11. New York, NY,
USA: ACM, 2011, pp. 1297–1302.

[59] S. Ludi, “Position paper: Towards making block-based programming
accessible for blind users,” in IEEE Blocks and Beyond Workshop, 2015,
pp. 67–69.

http://researcharchive.vuw.ac.nz/handle/10063/3654

	Introduction
	Tiled Grace
	Existing Block Programming Systems
	Scratch
	Squeak Etoys
	Alice
	Blockly
	App Inventor
	Droplet and Pencil Code
	BlockEditor
	GP
	Calico Jigsaw
	TouchDevelop
	Greenfoot and Stride
	Other systems

	Designing Tiled Grace
	Migration
	Event versus Process
	Relationships and Dependencies
	Errors
	Shapes

	Experiment
	Procedure
	Summary

	Preferred Modalities
	Editing as Text
	Editing as Tiles
	Summary

	Discussion
	Lessons and Conclusion
	References

