
This is the Accepted manuscript version of the following article:

P. P. Barragán, M. P. Velasco, J. Urquiza-Fuentes, G. J. G. -D. Álvarez, C. Anslow and M. Homer,
"Designing Collaborative ScratchJr for Multi-Touch Tabletops," 2024 International Symposium
on Computers in Education (SIIE), A coruña, Spain, 2024, pp. 1-6, doi:
10.1109/SIIE63180.2024.10604572.

DOI: https://doi.org/10.1109/SIIE63180.2024.10604572

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/SIIE63180.2024.10604572

Designing Collaborative ScratchJr for Multi-touch
Tabletops

Pedro Paredes Barragán∗,
Maximiliano Paredes Velasco†, Jaime Urquiza-Fuentes‡,

Guillermo J. Garcı́a-Delgado Álvarez§
Universidad Rey Juan Carlos,

Madrid, Spain
Email: ∗pedro.paredes@urjc.es,

†maximiliano.paredes@urjc.es, ‡jaime.urquiza@urjc.es,
§guj.garciadelga.2018@alumnos.urjc.es

Craig Anslow∥, Michael Homer∗∗
Victoria University of Wellington

Wellington, New Zealand
Email: ∥craig.anslow@vuw.ac.nz, ∗∗michael.homer@vuw.ac.nz

Abstract—Teaching fundamental aspects of computer science
at pre-university levels has been a relevant topic for several
years. Visual programming environments based on block-based
languages, such as Scratch, have gained prominence due to their
ability to simplify entry into the complex field of programming.
This work focuses on ScratchJr, a user-friendly environment
specifically designed for early childhood and primary education.

Collaborative learning is one of the most effective and widely
used methodologies in classrooms. With this in mind, our research
centers on designing a collaborative interface that enables group
work among multiple students within a shared workspace. This
workspace will be deployed on a multitouch table, leveraging the
advantages provided by such devices. These advantages include
enhanced collaboration and the need for hands-on experiences
for young learners.

We present the interface design process, which began with a
participatory and collaborative approach involving students from
early childhood and primary education degrees. Following this,
we proceeded with both low-fidelity and high-fidelity prototyping
stages.

I. INTRODUCTION

Teaching programming to young children is not a novel
idea, as is demonstrated by the Logo language, invented in
the 60’s [1]. However, this trend has become widespread in
the last two decades. The term STEM (Science, Technology,
engineering and Maths) was coined by Judith Ramaley [2]
to identify fields with a lack of knowledgeable workers. This
necessity was highlighted by many events, e.g. The US NAP
report regarding dedicating efforts to create high quality jobs
related to science and technology [3] or the President Obama’s
2016 State of the Union Address [4]. Within this context,
technology related contents have more presence not only in
universities or colleges but also in schools. For instance,
learning to program is currently a common task in most of
schools from many different countries.

But students from schools can hardly cope with the com-
plexity of textual programming. This is the reason because
the number and presence of visual programming environments

has been increased. Within this type of programming environ-
ments, the block-based ones [5] have been, by far, the most
successful.

Block-based programming languages use a programming-
command-as-puzzle-piece metaphor. This approach allows to
provide the user with visual cues, based on shape and color
of the pieces, about how they can be assembled. And these
pieces are assembled using drag-and-drop interactions to build
the programs [5]. Nowadays, block-based programming is
widely used to teach programming concepts within different
scopes, e.g. the MIT APPInventor1 for creating APPs of
mobile devices, the LEGO MINDSTORM Block language2 for
educational robotics, the well known Scratch [6] for primary
and secondary school or the ScratchJr language for early
primary school [7]. In fact, many toys are distributed together
with some kind of programming facilities [8]. The focus of
this work is on ScratchJr, which represents a way to introduce
young children to programming. ScratchJr was specifically
developed with a user-friendly interface that makes it easy
for young learners to get started.

In addition, collaborative learning is a well-known and
effective methodology used in these contexts [9]. Collaborative
learning is a pedagogical technique in which a topic or subject
is addressed by teams of students who actively participate in
the learning process. Thus, by working in groups, students
strengthen different skills such as teamwork, logical reasoning
or creativity. The key aspects of collaborative learning is the
mutual influence between peers and the equality of participa-
tion in tasks [10]. Despite the potential of the collaborative
approach, the effects of collaborative programming in educa-
tion are still under research [11], e.g. some pair programming
experiences show no advantages against a non-collaborative
approach [12].

Finally, multi-touch tabletops have shown their advantages
in supporting collaborative activities and enhancing learning
experiences [13]. Despite its potential benefits, few approaches

1https://appinventor.mit.edu/
2https://makecode.mindstorms.com/blocks979-8-3503-7661-6/24/$31.00 ©2024 IEEE

Fig. 1. Participatory co-design session with students.

(e.g. [14], [15]) have been found using the combination of
block-based programming, collaborative learning, and multi-
touch tabletops. This work describes the design of a prototype
where young students can work together to create their own
ScratchJr programs while using the tabletop as a shared
workspace. The building process of this prototype consists
in two phases: the design of a low-fidelity prototype using a
cooperative design approach and the design of a high-fidelity
prototype.

II. DESIGN OF THE LOW-FIDELITY PROTOTYPE

The design process of the low fidelity prototype followed
three steps. Firstly, a participatory co-design process with
students was performed. Secondly, the prototypes produced by
the students were evaluated. Finally, the low-fidelity prototype
was designed using the main requirements of the application,
the students’ prototypes and their evaluations.

The participatory co-design process engaged four instructors
and 23 students from two different degrees: early childhood
education (five students), and computer science (18 students).
The former shared their knowledge about the features of
children between 3 and 6 years old and their experience using
ScratchJr, while the latter put into practice the principles of
Human Computer Interaction and User Interaction design.
Students were divided in five groups mixing students from
both degrees. During a 2 hours long session, they produced
low-fidelity prototypes for the use of ScratchJr on a multi-
touch surface from a collaborative perspective, see Fig. 1.

Prototypes were designed with markers, cardboard, scissors,
and glue. We collected information through video record-
ings of their explanations, photographs, and the prototypes
themselves that were evaluated and used to produce the one
presented in this work.

A. Evaluation of Students’ Prototypes

One of the prototypes was discarded as the group had not
had time to create a useful artifact for our research. The
other four were evaluated by three experts in collaborative
interface design.To achieve this, recordings, photographs and
the prototype itself were used.

As can be seen in Fig. 2, this prototype work screen is
centered on a smaller central box, leaving the sides for exten-
sion of activities. At the top are control buttons: settings/start

execution/undo/communicate (an envelope) and a main menu
button. At the bottom there are several empty buttons for
function extension. Finally, much more visible are four pencils
that suggest editing. Clicking on them hides only areas of the
table (an L-shaped corner of the table) but the area of the
program scene is always visible.

Advantages:
• Use full-screen mode.
• Four sides of the table with the pen to allow anyone to

edit.
• The central part visualizes the look/execution of what

they build.
• The basic construction functionalities should appear on

the sides and try not to hide the central part.
• Infrequent functionalities (configuration and templates) in

the central part, appear and disappear pop-up.
Disadvantages:
• Corner space is not used most of the time.
• Large ”CODE” keys do not have good orientation.
• Reserve central fixed space for things you don’t often do:

add characters or backgrounds.
In the second prototype (Fig. 3) the entire screen is divided

into four individual spaces. Each user has a semicircle with
a play button, a character button, and a background button.
The character and background controls open pop-ups with
the available characters and backgrounds. When you select a
character, it stays in your personal area and you can assign
actions to it. By pressing the play button, we can see the
result of those actions in the background we have chosen. The
execution window is also pop-up and includes scroll buttons
to place the character in the place of the scenario where we
want, and a stop button to stop the execution.

Advantages:
• Pop-ups allow the space not to be cluttered with many

components.
• That space can be used to display different windows with

the relevant information at any given time.
• Minimalist design, with its advantages and disadvantages.
Disadvantages:
• It doesn’t seem like it’s meant to collaborate, but rather

for one to be in control and take turns.
• The low persistence of information on the screen can be

an obstacle to editing actions and seeing the result at the
same time (having both things visible on the screen).

• The background icon is an F (“Fondos” is the translation
of background in Spanish), not very intuitive for young
children.

The third prototype (Fig. 4) seems to focus on a workspace
with no individualized spaces for different users. Basically, it
can be divided into a scene area (left half) and a character
area (right half). There is a blank slot with unused available
space.

Advantages:
• Can be worked on simultaneously with the tasks of:

scenarios and characters.

Fig. 2. Prototype 1

Fig. 3. Prototype 2

• Leveraged Scratch controls and organization (leverage
user insights): go back to start, run, run from start again,
view grid, view full screen, part categories, parts, and
program.

• Backgrounds are editable (they can be silhouettes that
can be colored, text added, etc.). An interesting option
for young children.

• Restricted to 4 characters, for ScratchJr it’s more than
enough. Each character button is differentiated by the
color that may be associated with the character’s main
color.

• The character area could be shared among several, so that
two could be viewed/programmed at a time (more than
two may be more complicated), and the area could also
be used to the maximum depending on the number of
characters you want to see at once.

• Character can be customized with classic editing controls.

Disadvantages:

• Users have to share the entire space, no different
workspaces per user.

• Due to the unique orientation it would only support two

Fig. 4. Prototype 3.

users, three at most.
• There is no control to stop the execution.
• The background palette doesn’t need to be there all the

time, it takes up space.
• Very little space for the work area that needs the most

attention, character behavior design.
The latest prototype (Fig. 5) is based on individual

workspaces in the corners and a central common space.
Controls are concentric circular areas, which expand from the
execution flag. Each area serves a different purpose.

Advantages:
• “Edit control” can be transferred.
• Aesthetic concentric controls.
• Aesthetic tree controls.
• Everyone sees in their orientation how the work turns out.
Disadvantages:

Fig. 5. Prototype 4

• There doesn’t seem to be any simultaneous work, only
one can edit at any given time, the rest just see.

• There is no information about program execution con-
trols, nor detailed editing of anything.

B. Low Fidelity Prototype

The environment is divided into up to five workspaces (see
Fig. 6) based on territoriality designs [16] including one shared
workspace (SW), and a group of user workspaces (UWs) –
between two and four– around the SW, ensuring that none of
the users has an inverted view of the SW. The border of each
UW has a different color, it is used to identify objects visible
in the rest of the workspaces that are being modified by a user.
Two gestures communicate SW and UWs: a throwing gesture
on an object from a UW to the SW publishes it in the SW, and
a drag and drop on an object from the SW to a UW allows a
user to modify the object in her/his UW.

An important design decision is to take advantage of the
user’s previous knowledge about ScratchJr. Therefore, the
environment imitates the interfaces of ScratchJr for back-
ground and character (appearance and scripts) editing and
script execution. The SW shows the state of the work accepted
by all users. It also allows users to create the scenes, the back-
ground, and the characters or modify existing ones. In addition,
the UW provides two controls to accept or reject changes
proposed by other users. Finally, the collaborative environment
has to manage different conflicts regarding scene editing.
Thus, within the same scene, the following objects/properties
cannot be simultaneously changed by two or more users:
background, the appearance of a concrete character, and the
scripts associated with a concrete character.

III. DESCRIPTION OF THE HIGH-FIDELITY PROTOTYPE

A new prototype has been developed taking into account the
low-fidelity prototype proposed previously. The new proposal
is a high-fidelity prototype and aims to show the main features
of the future software, with a focus on the user interface.
The high-fidelity prototypes are often interactive and they
may include visual elements such as colors, typography and
layout of the elements, all of which aim to simulate the user’s
real experience with the final software product. The following

sections detail the adaptation process from low to high fidelity
and the user interface of the high-fidelity prototype. This
prototype was developed using Figma3, a prototyping tool
centered on vector graphics editing.

A. Adaptation of the resulting co-design product

The prototype generated during the co-design process has
been adapted to create the high-fidelity prototype. The adap-
tations made are as follows:

• It is decided to maintain a collaborative area (SW) at
the top of the user interface, and several individual
spaces (UW), one for each user, at the bottom and the
left and right sides. However, a new section has been
added between these areas to manage the user during
the collaborative session. This section shows the number
of users connected to the session and allows for adding
and removing users, dynamic adjusting the layout of the
screen according to the number of users.

• The UW spaces are distributed along the bottom and sides
of the screen. These spaces can be resized depending
on the number of users, with a maximum capacity of
four users. This allows for individual work areas to be
extended or reduced to make the most of the available
screen space.

• The features or functions are organized into two types:
1) individual functions, which affect to resources of UW
space, and 2) collaborative function, which affect to group
resources.

• The color coding remains consistent. When students log
into the system, they are assigned a specific color. This
color is utilized to highlight their personal area and to
identify which student has submitted a proposal.

• Adding scenes and characters to the program is main-
tained. However, the management of these elements,
such as editing and removal, is not included in order
to simplify the prototype. It is important to note that
the objective of a high-fidelity prototype is to obtain a
simulation of the product, rather than a final and complete
one.

• The management of interaction conflicts in a collaborative
digital environment is a key aspect. Identifying the most
important interaction conflicts is crucial for adapting the
resulting product of co-design process to high-fidelity
version. Obviously, the list of potential conflicts may be
very long. Therefore, some user actions are restricted to
reduce interactions conflicts. Specifically, editing scenes
is not permitted in the high-fidelity prototype to avoid
conflicts.

B. User interface

The user interface of the high-fidelity prototype is adapted to
the number of users connected. Figure 7 shows a screenshot of
the prototype with three users creating a basic script. The user
interface is structured into three main parts. Firstly, two buttons

3https://www.figma.com

Fig. 6. Global view of the environment with four UWs.

situated in the upper left and right corners of the screen allow
access to the home screen and settings, respectively. Three
features can be adjusted through the settings button: volume,
brightness, and notifications. The collaborative space features
a principal area to display the execution of scripts, which
occupies the most space. Within this area, several buttons from
ScratchJr are displayed to manage script execution and design
scenes, including starting execution, restarting execution, and
accessing the scene gallery (see Figure 7, marked as A). Sec-
ondly, in the middle of the user interface, two buttons manage
connected users. Figure 7, marked as B, shows these buttons
labeled with the symbols ”+” and ”-”, which allow users to be
added or removed from the session. Additionally, an emoticon
representing each connected user is displayed in this area.
Finally, several individual spaces are shown (see Figure 7,
marked as C). These spaces offer a block panel to create
scripts individually. Once again, the blocks have a similar
look and feel to those of ScratchJr, leveraging users’ previous
experience. The blocks are grouped into several categories
such as movement, sound, messages, etc. When a user selects
a category, the corresponding blocks are displayed. The high-
fidelity prototype implements only some of these blocks: four
basic movements (up, down, right, and left), start and end
blocks. Additionally, the prototype supports adding characters.
The high-fidelity prototype implements a notification system
to coordinate user proposals within the group. When a user
proposes a change to the script, a notification is generated for
all users. This notification must be accepted or rejected by the
rest of the users in order for the proposed change to be applied
in the collaborative space.

IV. CONCLUSIONS AND FURTHER STEPS

Tangible interfaces seems to be a promising line of work,
although more research is needed to clarify its impact on
programming learning experience [11]. This study leverages
a multi-touch tabletop as the primary tangible interface to
facilitate collaborative learning of block-based programming.
It introduces a high-fidelity prototype aimed at teaching
ScratchJr to young students. A co-design process involving
23 students from diverse disciplines was conducted in the
classroom to develop several low-fidelity prototypes. These
prototypes were subsequently analyzed for usability, culmi-
nating in the development of the high-fidelity prototype. The
prototype has two main spaces: one for collaborative work and
another for individual tasks such as programming scripts and
character creation. The following steps of this project will be,
firstly, developing a software that implements the high-fidelity
prototype. This prototype will be empirically evaluated with
pre-service teachers and young students. Finally, its feedback
will guide the development of the final application.

ACKNOWLEDGMENT

The authors acknowledge the collaboration of Marı́a del
Carmen Lancho Martı́n and Iván Ramı́rez Dı́az, the teachers of
the HCI course, for their support during the co-design session.
This work has been co-funded by the following grants: Ayuda
Puente 2023, URJC, Ref. M3035; Proyectos de Innovación
Educativa URJC Ref. PIE23-157; and PID2022-137849OB-
I00 funded by MICIU/AEI/10.13039/501100011033 and by
ERDF/EU.
Statement of use of generative AI and AI-assisted technologies
in the drafting process. During the preparation of this study,

Fig. 7. High-fidelity prototype.

the authors used MS Bing Chat to improve the readability
of the language in English. After using this tool, the authors
have reviewed and edited the content as necessary and take
full responsibility for the content of the publication.

REFERENCES

[1] C. Solomon, B. Harvey, K. Kahn, H. Lieberman, M. L. Miller,
M. Minsky, A. Papert, and B. Silverman, “History of logo,”
Proceedings of the ACM on Programming Languages, vol. 4, no.
HOPL, jun 2020. [Online]. Available: https://doi.org/10.1145/3386329

[2] J. Hallinen, “s.v. stem,” in Encyclopedia Britannica, 2024. [Online].
Available: https://www.britannica.com/topic/STEM-education

[3] N. A. of Sciences, N. A. of Engineering, and I. of Medicine,
Rising Above the Gathering Storm: Energizing and Employing
America for a Brighter Economic Future. Washington,
DC: The National Academies Press, 2007. [Online]. Avail-
able: https://nap.nationalacademies.org/catalog/11463/rising-above-the-
gathering-storm-energizing-and-employing-america-for

[4] T. O. W. House, “President obama’s 2016 state
of the union address,” 2016. [Online]. Avail-
able: https://medium.com/@ObamaWhiteHouse/president-obama-s-
2016-state-of-the-union-address-7c06300f9726.fky3fqa7g

[5] Y. Lin and D. Weintrop, “The landscape of block-based programming:
Characteristics of block-based environments and how they support
the transition to text-based programming,” Journal of Computer
Languages, vol. 67, p. 101075, 2021. [Online]. Available:
https://doi.org/10.1016/j.cola.2021.101075

[6] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: programming for all,” Commun. ACM,
vol. 52, no. 11, p. 60–67, nov 2009. [Online]. Available:
https://doi.org/10.1145/1592761.1592779

[7] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. Bers, P. Bontá,
and M. Resnick, “Designing scratchjr: Support for early childhood
learning through computer programming,” in Proceedings of the 12th
International Conference on Interaction Design and Children, ser. IDC
’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 1–10.

[8] J. Clarke-Midura, V. Lee, J. Shumway, and M. Hamilton, “The building
blocks of coding: a comparison of early childhood coding toys,”
Information and Learning Sciences, vol. 120, no. 7/8, pp. 505–518,
2019. [Online]. Available: https://doi.org/10.1108/ILS-06-2019-0059

[9] H. Jeong, C. E. Hmelo-Silver, and K. Jo, “Ten years of computer-
supported collaborative learning: A meta-analysis of cscl in stem ed-
ucation during 2005–2014,” Educational Research Review, vol. 28, p.
100284, 2019.

[10] A. O’Donnell and C. Hmelo-Silver, “Introduction: What is collaborative
learning?” in The International Handbook of Collaborative Learning,
C. Hmelo-Silver, C. Chinn, c. Chan, and A. O’Donnell, Eds. Routledge,
2013, ch. 1, pp. 1–15.

[11] L. Silva, A. Mendes, and A. Gomes, “Computer-supported collaborative
learning in programming education: A systematic literature review,”
in 2020 IEEE Global Engineering Education Conference (EDUCON),
2020, pp. 1086–1095.

[12] M. Colleen, “Is pair programming more effective than other
forms of collaboration for young students?” Computer Science
Education, vol. 21, no. 2, pp. 105–134, 2011. [Online]. Available:
https://doi.org/10.1080/08993408.2011.579805

[13] M. Mateescu, C. Pimmer, C. Zahn, D. Klinkhammer, and H. Reiterer,
“Collaboration on large interactive displays: a systematic review,” Hu-
man–Computer Interaction, vol. 36, no. 3, pp. 243–277, 2021.

[14] B. Selwyn-Smith, C. Anslow, M. Homer, and J. R. Wallace, “Co-located
collaborative block-based programming,” in 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2019, pp.
107–116.

[15] B. Selwyn-Smith, C. Anslow, and M. Homer, “Blocks, blocks, and more
blocks-based programming,” in Proceedings of the 1st ACM SIGPLAN
International Workshop on Programming Abstractions and Interactive
Notations, Tools, and Environments, ser. PAINT 2022. New York, NY,
USA: Association for Computing Machinery, 2022, p. 35–47.

[16] S. D. Scott, M. S. T. Carpendale, and K. Inkpen, “Territoriality in
collaborative tabletop workspaces,” in Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work, ser. CSCW ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
294–303.

