
In-Line Compositional Visual Programming
Michael Homer
mwh@ecs.vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

ABSTRACT
Concatenative programming inherently expresses composition of
sub-tasks of a pipeline, but one uncommonly seen model of this
paradigm includes all data values inline within the program. A
visual environment for editing and evaluating programs in this
model would inherently display state in place, and allow for easy
tracing of data flow through the program by watching the values
literally move as evaluation steps took place. We propose a visual
approach for programming in this style, with function calls and
data values interleaved on a single “track”, with specific concrete
arguments always adjacent when a function term is evaluated and
various affordances for editing, evaluating, and debugging. We then
show how extensions to this model to multiple tracks can ease
programming in the model and even make available some more
inscrutable programming-language features, such as concurrency
and effect systems, in a more accessible way.

CCS CONCEPTS
• Software and its engineering→ Visual languages; Functional
languages; Data flow languages.

KEYWORDS
visual programming, dataflow programming, end-user program-
ming, concatenative programming
ACM Reference Format:
Michael Homer. 2024. In-Line Compositional Visual Programming. In Com-
panion Proceedings of the 8th International Conference on the Art, Science,
and Engineering of Programming (‹Programming› Companion ’24), March
11–15, 2024, Lund, Sweden. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3660829.3660841

1 INTRODUCTION
Both concatenative and visual programming languages naturally
express data-flow pipelines, but are often seen as cumbersome to
use or difficult to understand and debug. However, these paradigms
have complementary strengths despite their contrasting styles, and
a fusion can gain the benefits of both. This fusion will make some
uncommon choices on both sides. In particular, here we propose
following what has been called the “prefix-concatenative” model:
the program consists of a sequence of mixed function calls and data
values, and evaluation replaces a function call whose arguments
are all available with its result. This approach naturally leads to a

‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Companion
Proceedings of the 8th International Conference on the Art, Science, and Engineering
of Programming (‹Programming› Companion ’24), March 11–15, 2024, Lund, Sweden,
https://doi.org/10.1145/3660829.3660841.

visual model where the view of the program during editing, and
of intermediate states during evaluation or debugging, is identi-
cal; evaluation can be single-stepped, with partial results taken
or preserved as their own editable functions; and bespoke visual
representations of the transformation steps included to aid under-
standing.

The contributions of this paper are:
• A visual programming environment built around an inline-
compositional concatenative language.

• Extensions to this model involving parallel tracks of execu-
tion in various ways.

• A prototype implementation that runs in a web browser.
The next section sets out background on concatenative lan-

guages, visual programming environments, and data-flow pipelines.
Section 6 discusses related work, and Section 7 reflects on expe-

rience using the system and concludes.

2 BACKGROUND
The “concatenative” paradigm refers to the ability to concatenate
the source of two subprograms and produce a program represent-
ing the composition of the operations of the two. Slightly more
generally, the term compositional is sometimes used to refer only
to the semantics [12].

The most common form of concatenative language is the stack-
based language, where functions pop their arguments, and push
their return values, on a latent stack, and are evaluated left-to-right
in a postfix notation. This is the model used by Forth [18]. Any
function consumes zero or more stack values and produces zero
or more stack values, and two functions used consecutively will
then have some or all of the results of one be consumed by the
next; all functions can have any arity in both directions, and the
next function need not match that. While conventionally analysed
as imperative stack manipulation, these are equivalently seen as a
functional model, as in Joy [30]. A concatenative, or compositional,
language thus uses juxtaposition to indicate composition of func-
tions, where typical “applicative” functional languages use it for
function application.

A useful property of any concatenative language is free abstrac-
tion: by nature, any linear subsequence of terms in the program
can be spliced out and replaced with a call to a new function whose
body is exactly those terms, with no further modification needed on
either side. In this way, they encourage factoring out not just com-
mon subexpressions, but any subsequence of terms that is useful
to name, and foster a style of programming that favours break-
ing apart the problem into very small, composable pieces whose
functionality is clear from their name. They also by nature express
chains of operations applied sequentially to inputs simply, and so
can make a good fit for data-flow pipelines, which are a significant
area for end-user programming.

https://orcid.org/0000-0003-0280-6748
https://doi.org/10.1145/3660829.3660841
https://doi.org/10.1145/3660829.3660841
https://doi.org/10.1145/3660829.3660841


‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden Michael Homer

Although concatenative and stack-based languages are often
identified with one another, there are both non-concatenative stack-
based models and non-stack-based concatenative models, and this
paper is interested in the latter, in particular an approach we will
call “inline” concatenative programming. In an inline concatenative
language, concatenating subprograms still composes them together,
but the data values are not hidden on a stack, and instead included
inline within the program source, interwoven with function calls.
A program is thus a sequence of terms, each of which is either an
operation (function call) or a value. When evaluating a program, a
single step either either

• identifies some operation term whose arguments are all
present and adjacent as values, and replaces that subse-
quence with the results of executing that function, or

• expands a function call to the sequence of terms that was
defined as its body verbatim, which in a concatenative model
gives an identically-behaved program.

For primitive operations, only the first of these is possible, while
for user-defined functions either is available. Unlike an applicative
system, such as the lambda calculus, but like all other concatenative
systems, the operations in this model do not form a tree structure.
Any operation may have multiple return values, and another oper-
ation may consume only some of those, automatically leaving the
remainder for other operations; this “arity-neutral” composition
is a distinguishing feature of concatenative programming, but is
most visible in an inline approach. An existing realisation of this
model is found in the Om language [6], which describes itself as
“prefix concatenative” (as it does not use the typical postfix order-
ing of common stack-based languages), but more significantly it
follows an inline-compositional approach. A formal treatment of a
minimalistic calculus language with this model has been given for
the Kihi language [12].

There are a number of interesting properties that arise out of this
inline concatenative paradigm: there is no hidden state, all values
are visible in the program, any evaluation step produces a valid
program, and input values (or values deriving from them) move
steadily from right to left. These properties make it an interesting
candidate for a visual programming environment, which can make
use of those visual traits and expose affordances for manipulating
and debugging the program that are not available in a conventional
text editor, and which can expose the strengths of the programming
model for some tasks to users more easily than either expressing
those tasks in more common programming paradigms, or using
one of the notoriously-abstruse concatenative languages for their
problem.

3 DESIGN
At a very high level, the system we propose is a visual program-
ming environment for data-flow programs, structured as follows.
Following the inline-compositional model, this system will display
a program or function definition as a row of interleaved operation
(function call) and data (constant value) cells. The data cells display
the value they contain, with suitable affordances for manipulating
them and suitable visualisations. When editing, sequential subse-
quences of cells can be selected and abstracted into new named
functions spliced in their place. Operation cells can be expanded

Figure 1: Evaluation steps of a simple mathematical expres-
sion as seen in the system. Each row is the successor of the
previous; the div-rem function is returning two outputs.

inline to their definitions, and new operations or values inserted
between any two cells. The operations are typed and the system
will reject invalid compositions, while allowing invalid states to
exist while editing, with placeholders where further changes need
to be made. Programs or functions can be evaluated in a single-step
mode to debug or understand them (or for some other purposes
discussed later), which will make a single reduction of an operation
whose arguments are all present, either expanding to the function’s
definition, or resolving it to the return values of the function. Fig-
ure 1 shows the steps of a trivial example of this evaluation process.
Because these partially-evaluated programs are self-contained free-
standing programs with all their data dependencies included, they
can also be saved, edited, and refined. In this way, a user who is
uncertain about the behaviour of a program, or the implications of
a change, can see it in operation with concrete values in situ, revise
it speculatively, and continue.

3.1 Editing the Program
The user can drag to select any subsequence of terms— including
the empty subsequence between terms or at either end— and splice
it out for a replacement chosen from a menu of options:

• A newly-defined named function with that subsequence as
its body.

• A chosen operation or value with a matching type for that
location.

• Nothing, removing the subsequence entirely.
• The sequence quoted as a literal value.
• The result of evaluating the subsequence as far as possible
internally.

• One single step of evaluation, most useful for expanding a
function call to its definition.

• Another operation that is not type-compatible. In this case,
an error marker will be displayed on the side or sides that
requires additional terms, and the user can insert them as
desired.

• Leaving the sequence as-is, but extracting it into a new func-
tion definition; this can be for generalisation or specialisa-
tion, or to allow interactive debugging.



In-Line Compositional Visual Programming ‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden

Figure 2: A (trimmed) menu of splice options for a selected
subsequence. The selected terms have a thick orange high-
light, around the yellow border of the two operation terms.
The value terms, with blue border, are not selected and will
not be replaced by the selected menu operation.

Figure 2 shows a version of such a menu, trimmed for space.
It uses type information about the selected subsequence to deter-
mine which options are available to replace it, in order to avoid
overwhelming the list with irrelevant options. Additional options
are plausible, such as pre-generated combinations of operations
including argument-reordering or other standard transformations
that allow inserting operations that are almost type-compatible but
for ordering. Similarly, chaining multiple operations on the same
sequence is feasible and potentially useful. Suitable interactions to
surface these other options without overwhelming the user remain
future work.

3.2 Evaluating
Conceptually, these programs could be deployed as standalone
pipelines, or embedded in another system, but for the moment we
only consider evaluation within the visual environment itself. Any
function definition can be selected for evaluation, including the
“whole program”. On being evaluated, the function body is copied
into another area, with the original definition left intact. The user
can select to evaluate fully immediately, producing the resulting
values, to take a single step and pause, or to evaluate fully but pause
briefly at each step before continuing automatically. When there
are no evaluable terms left, the evaluation is complete; this could
be because there are only values left, or because all values have
moved to the left edge of the program and any remaining operation
terms do not have all their arguments available.

Whether stopped or paused, the same edits can be made as to
a static function definition and evaluation continued. The current
program state can be saved into a new function definition, or even
be set to replace the original. In this way it is also possible for the
programmer to create functions designed to produce other func-
tion definitions through partial evaluation, specialised with certain
starter values.

Regardless of the stepping mode chosen, the program evaluates
by choosing an operation term that is followed by as many value
terms as needed to satisfy its arguments, and replacing that term
with the result of evaluating the operation with those values. For
non-primitive functions, these evaluate by replacing the operation
term with the body of the function, with the arguments left in
place. For irreducible primitive operations, such as numeric addi-
tion, the operation and its arguments are replaced with the result
immediately.

The selection of which operation to evaluate is to some extent
arbitrary: for non-side-effecting code, the outcome is the same for
any order of evaluation, as in the Kihi model [12]. The current
prototype always selects the leftmost evaluable operation term, but
both choosing the rightmost term and more sophisticated models
are possible. For example, given the expected role of interactive
stepping and debugging, it may be best in practice to choose the op-
eration with the largest or smallest number of arguments available,
or to prioritise primitive operations over function expansions. It
is not obvious what the best approach is, so the current prototype
makes a simple choice and leaves the question open for further
exploration and user studies.

3.3 Visual Representation
A single function is a list of terms. In display, this is a single hori-
zontal track of cells. Operation terms are displayed as a box with
the operation name yellow border, while value terms are displayed
as a box with the value and a blue border. Figures 1 and 2 show
both types of term. Compound values, such as lists and dictionar-
ies, are stacked vertically within the box. Some values may have a
more visual visual representation naturally, such as images, or may
have a suitable visualisation available. These visualisations can be
decoupled from the rest of the system, as they are encapsulated
within the value cell, but in some cases they could offer interactive
affordances for direct manipulation of data as well. However, inter-
actions could interfere with selection and editing operations at the
program level, so require caution, and the present prototype does
not include them.

When a term is to be evaluated, it is highlighted along with its
argument terms first. The new terms are then displayed in its place,
with a short animated transition to make the relationship clear.

The origin of expanded terms is recorded and can be displayed
as a highlighted bar below the terms, with multiple overlapping
bars as applicable. This gives a tree (or really, a directed acyclic
graph) representation of the origins of each term that was not
in the original definition, but it takes up significant space and is
not displayed by default. These highlights have some interactivity,
allowing to select the full subsequence of remaining terms or to
point at the location within the original definition, but no further
functionality is available at present.



‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden Michael Homer

Figure 3: A simple example of a bypassed operation, where
“set-aside” will move its argument to the second track below,
and “restore” will bring it back, allowing add to use the two
arguments below and mul to access the set-aside value along
with the result of the addition. Top: the initial program. Bot-
tom: the program state after set-aside has executed.

4 MULTIPLE TRACKS
So far, the system has been described as evaluating one pipeline,
with a single “track” of terms. However, the visual layout of the
program is not constrained to a single row, and the model is not
constrained to a single track. In this section, we explore the implica-
tions of multiple tracks, and how they could relate to one another, or
help to make otherwise-obtuse or difficult-to-understand concepts
or program structures more accessible. We will consider a few differ-
ent mutually-incompatible extensions and their potential uses and
trade-offs; it is not clear which if any of these candidates is worth
the complexity, but all have proven viable in test implementations.

4.1 Concurrent Tracks
The simplest extension to the model is to allow multiple tracks
to be evaluated in parallel. These would operate independently,
with their own scheduling, reduction, and data, but be displayed as
literal parallel tracks.

4.2 Higher-Order Functions
Higher-order functions like map and filter apply some operation
to each of many values in a collection. A map has an obvious visual
representation with multiple tracks: for each item in the collection,
a new track is created containing a copy of the expression to be
mapped, and the single data value at the end. These tracks can
then proceed as usual in parallel, with the same single-stepping
and inspection capabilities in the visual environment. There is a
direct visual indication of the processing of each item, including
the intermediate steps of the transformation.

4.3 Bypassing Operations
A typical annoyance in a concatenative language is Byzantine stack
manipulation sequences to process a value that is “below” another
before it. This generally involves some sequence of rotation oper-
ations, sometimes with complex quoting and unquoting as well,
or in simple cases a primitive “dip” operation that evaluates a quo-
tation with the top value temporarily held off-stack. A secondary
track could allow for values to be “set aside”, moved to that track
to expose the values below, and then restored at another point.

A function on the principal track could send its argument into
the other track, and multiple calls would queue up multiple values

Figure 4: Three tracks, with every possible combination of
tracks appearing in at least one function. divmay produce
an error on the failure track, but is not on the log track and is
seen “going behind” it; log-error produces a log message on
the log track for every error it sees, and passes on the error,
relaying any unrelated log messages it sees transparently.
fail-default uses the default value of 100 when an error
has been produced in evaluating its arguments; log-console
handles log messages. Functions that are not on a given track
are transparent to values passing by them there, but the hori-
zontal space is left empty to keep a clear alignment of terms.

there. Another function “restore” would take the next value from
the other track and put it back on the principal track. Figure 3
depicts a simple example of this, where “set-aside” appears across
both tracks: when executed, it will produce nothing on the top
track, but output 5 on the bottom track. Conversely, “restore” will
receive that 5 and produce it on the top track. The purpose, order,
and progress of this operation would be explicit and visible to the
user in a way that paired rotation operations are not, and it is
particularly suitable for animating or single-stepping to understand
the program.

4.4 Error Track
Some operations may fail at run time based on their input values
or an external problem; a trivial example is division by zero. These
errors should be reported by the operation, but a conventional
pipeline or functional program does not offer a clean way to do so:
either the error must be reported as a value, meaning that the rest
of the system must be prepared to unpack and relay a variant type,
or the reporting must jump outside of the ordinary execution flow.
Under this model, there can be a separate “error track” in parallel
with the main body: a function that fails emits an error value onto
that track instead of its normal output. That track can have its own
code to process the error case, and will also evaluate in the same
way as the rest of the system.

4.5 Effects
The preceding section described a way to address failed function
executions, but it approaches a more general solution as well. We
can consider a failable operation (such as div) as being a cross-track
function, existing on both the principal track and the error track.
When it evaluates, it is able to produce an output on either track.

We can consider other cross-track functions that do not neces-
sarily produce errors themselves: for example, a decorate-errors
function could have two definitions:

• On the principal track, decorate-errors <note> <arg> sim-
ply evaluates to its second argument.



In-Line Compositional Visual Programming ‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden

• On the error track, when an error argument is available, it
augments that error with the note provided on the principal
track and produces the augmented error.

This allows for code to specify how errors should be handled within
the evaluation of its arguments, and we could similarly have func-
tions for logging the errors to different destinations and other pur-
poses.

This can push one step further: when producing an error, a
reference to the producing function can also be put onto the error
track. That reference can be used for reporting purposes, but it is
also plausible to allow the error-handling code to direct the system
to substitute some other function or values in its place. In this
way, a “default” value could be inserted in place of an anticipated
error: default-on-error 99 div 1 0 would produce an error,
have it trapped by the handler, and replace the div call and its
arguments with 99. Given the “splicing” evaluation model of the
whole language, enabling this is fairly trivial. In effect, this is a sort
of limited one-shot delimited continuation.

This all need not be restricted solely to errors, however: we can
have arbitrary tracks, and functions can be permitted to cross any
of those they choose, returning values on any or all of those tracks.
Figure 4 shows a constructed system with three tracks “main”, “log”,
and “fail”. Log messages emitted on the log track will be consumed
by the nearest log-handling function, errors sent to the failure track
by the nearest error-handling function, and one function crosses all
three to produce a log message out of an error. This is one concrete
example, but the approach is general and any number of arbitrary
tracks and track-crossing functions are possible.

What we have is the beginnings of an effect system, where
effect-handling functions cross tracks to consume the side-channel
communications from effectful functions, and potentially to return
values back to them. The evaluation of these effects will follow the
same rules as the rest of the system, and the visual representation
will be the same as well. This may allow for easier comprehension
of the sorts of “action at a distance” that effects can have. It is
somewhat serendipitous more than an original design goal, but
merits further exploration.

5 IMPLEMENTATION
The prototype implementation is available at https://mwh.nz/demos/
px2024, and works in a web browser. It is written in TypeScript,
with a simple set of built-in operations to explore the space, but it
is not currently capable of sophisticated programs.

6 RELATED AND FUTUREWORK
Visual data-flow programming systems are relatively common mod-
els for domain-specific tools for end-user tasks; most often, these are
graph-based. Examples have existed for decades, and include Pure
Data [2], LabView [7], ProGraph [29], Yahoo! Pipes, and others [3].
These allow complex branching and merging, but usually focus
entirely on displaying the computation structure clearly, without
including the data values being operated on. Testing and debugging
in these systems have been identified as difficulties [13, 16, 26], with
changes to the nature of the input data leading to hard-to-analyse
behavioural problems. The system proposed here ought to do better
in that respect, but a trade-off made is that it is less expressive when

computations must split into separate branches, whether or not
recombined later, as the concatenative system will require “jump-
ing” some values over other terms to reach the operations in one
branch.

Subtext [4] is a quasi-visual programming environment rep-
resenting data values inline with operations, and explicit links
between different points of the program. As in this system, it is
possible to inspect the execution of the program to see how it ar-
rived at a particular state, parameters and variables are tacit and
unnamed (semantically), a function call essentially inlines the func-
tion’s definition, and manipulation is principally through pointer
manipulation rather than textual input. However, Subtext does
not present a concatenative model but something more akin to an
applicative–graph hybrid, and its core model is of replication and
aliasing; it is conceivable that programs in each model could be
projected or converted the other.

Thyrd [15] is a purely-visual concatenative programming lan-
guage and environment, where cells of a spreadsheet-like grid rep-
resent operations and values of the program, including recursive
grids, all edited through direct manipulation. Thyrd uses multiple
stacks to contain data values during execution, but values can be
directed into visible cells also, which can in turn be used as the
starting points of other operations; while intermediate results are
not displayed by default, it is possible to chain subprograms to-
gether such that all values are shown (or to display the various
stacks during evaluation). The evaluation and data models of Thyrd
are unique, but aspects of the visual display and manipulation have
similarities to other systems. Spreadsheet 2000 [31] was another
spreadsheet-like system with graph-based connections and direct-
manipulation programming, but not concatenative in approach.

Parès et al. [24] discuss constructing data-science workflow
pipelines through composing functions, and particularly addressing
effects within those functions. Their system is purely textual, but is
semantically compositional and has some similarities to the multi-
track extensions discussed in Section 4 in particular. Both static
checking and optimisation are important facets of this “Kernmantle”
system and are elements we do not address in the present work.

Moore’s colorForth [19] is a limited visual structured editor for
a concatenative language, and includes inline literal data values
and some static evaluation options. However, it is fundamentally a
syntax-tree editor for standard Forth, where word colour indicates
the token class instead of symbols or keywords, and has no visual
or interactive evaluation features.

Hazel [22] is a live, functional, structural programming envi-
ronment with data-flow elements. Interactive editing widgets are
available for inline data values and the program can have “holes”
that are evaluated around, similar to the type-mismatch placehold-
ers in the model of this paper, but it is intended to permit evaluating
“around” holes in partially-complete programs, and holes represent
only a single value or expression rather than unspecified computa-
tional steps. Conceptual visual interfaces for program terms date
back at least as far as Pygmalion [28]. Elliot [5] introduced “tan-
gible functional programming” in which values can be displayed
as editable GUI elements, including executing functions. The user
can construct higher-level values by composing elements in these
GUIs, using them as the principal editing interface.

https://mwh.nz/demos/px2024
https://mwh.nz/demos/px2024


‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden Michael Homer

Muhammad [20] analysed the semantics of widespread end-user
dataflow languages, and this analysis influences some of the design
choices in this system.

Spreadsheets are a common end-user dataflow programming
environment, and have been the subject of much research into their
use and misuse [9, 14]. They follow a rows-and-cells approach,
display (some) intermediate values, and often have visual means
for showing data dependencies (although it is not necessary to
the model). Many extensions to spreadsheets with additional kinds
of data, visual representations, and data dependencies have been
proposed [1, 8, 25] and sometimes incorporated into commercial
products. A common spreadsheet pattern is to have sequential steps
of a calculation laid out horizontally, each depending on the previ-
ous cell and sometimes earlier ones as well, which gives a similar
layout of calculation steps as here, but with each cell being respon-
sible for both displaying and calculating its value. This pattern is
a common source of spreadsheet errors, as some calculation steps
can easily be missed, or unused, and this passes silently [17, 23];
the approach in this system ensures that the sequence is explicit
and inspectable.

Userland [21] is a data-flow programming environment using
both spreadsheet-style formulas and Unix shell commands, and in-
cluding both spreadsheet-style cell dependencies and Unix pipeline
compositions. The pipeline modality has implicit composition and
displays the operation and its result in a cell, as here, but always tied
together and displaying both. Systems such as Natto [27] provide
a cards-on-canvas aesthetic for working with principally conven-
tional code, equipped with some data-flow connections between
cards and convenient renderers.

The limited previous work on visual environments for concate-
native languages has focused on the latent stack model, rather
than the inline model [10]. Follow-on to that work incorporating
multiple representations [11] of the program, particularly a graph-
structured editor, suggest a future direction for this system. Some
of the multiple-track extensions would seem at home in a graph
view, although it is not clear exactly how that would operate.

6.1 Future Work
The multi-track extensions are preliminary and raise questions
about how they can be typed, how they can be optimised, and how
they can be used in practice. In particular, there is not an obvious
formal model that accommodates the range of multi-track functions
given in the examples to ensure that each track is type-correct and
that the system is sound: some evaluate to different numbers of
values, or pass through values not their own, and it is only by the
cooperation of all involved functions that this is not a problem.

The select-to-splice interface is seemingly critical for efficient
use of the system, but no user studies have been conducted to
determine how well it works in practice. While it is hoped that
in-situ presentation of relevant options ameliorates the common
complaint of visual programming environments being cumbersome
to edit, it’s also possible that other approaches would give better
results, such as a drag-and-drop “toolbox” modality or keyboard-
based editor.

7 CONCLUSION
Under-explored even within the under-explored concatenative pro-
gramming paradigm is the inline style of structuring programs, but
it offers intriguing possibilities for visual programming. The system
proposed here is a first step in exploring that space, and has some
interesting properties that are not available in conventional visual
programming environments. The multi-track extensions are par-
ticularly novel, and offer a way to address some of the limitations
of the single-track model, and to make some otherwise-difficult
concepts more accessible. It is not clear that these are all practically
useful concepts, but we have outlined the space to highlight that
they are worth exploring further.

REFERENCES
[1] Glen Chiacchieri. 2018. Flowsheets v2. https://github.com/Glench/Flowsheets-

v2.
[2] Bryan W. C. Chung. 2013. Multimedia Programming with Pure Data. Packt

Publishing.
[3] Philip T. Cox and Simon Gauvin. 2011. Controlled Dataflow Visual Program-

ming Languages. In Proceedings of the 2011 Visual Information Communica-
tion - International Symposium (Hong Kong, China) (VINCI ’11). Association
for Computing Machinery, New York, NY, USA, Article 9, 10 pages. https:
//doi.org/10.1145/2016656.2016665

[4] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of programming.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (San Diego, CA, USA) (OOP-
SLA ’05). Association for Computing Machinery, New York, NY, USA, 505–518.
https://doi.org/10.1145/1094811.1094851

[5] ConalM. Elliott. 2007. Tangible functional programming. In Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming (Freiburg,
Germany) (ICFP ’07). Association for Computing Machinery, New York, NY, USA,
59–70. https://doi.org/10.1145/1291151.1291163

[6] Jason Erb. 2021. Om website. https://www.om-language.org/.
[7] M. Erwig and Bertrand Meyer. 1995. Heterogeneous Visual Languages—

Integrating Visual and Textual Programming. In Proceedings of Symposium on
Visual Languages. 318–325.

[8] Monica Figuera. 2017. ZenSheet Studio: A Spreadsheet-inspired Environment
for Reactive Computing. In Proceedings Companion of the 2017 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Vancouver, BC, Canada) (SPLASH Companion 2017). ACM,
New York, NY, USA, 33–35. https://doi.org/10.1145/3135932.3135949

[9] Valentina Grigoreanu, Margaret Burnett, SusanWiedenbeck, Jill Cao, Kyle Rector,
and Irwin Kwan. 2012. End-user Debugging Strategies: A Sensemaking Perspec-
tive. ACM Transactions on Computer-Human Interaction 19, 1, Article 5 (May
2012), 28 pages. https://doi.org/10.1145/2147783.2147788

[10] Michael Homer. 2022. Interleaved 2D Notation for Concatenative Programming.
In ACM SIGPLAN International Workshop on Programming Abstractions and In-
teractive Notations, Tools, and Environments. https://doi.org/10.1145/3563836.
3568722

[11] Michael Homer. 2023. Multiple-Representation Visual Compositional Dataflow
Programming. In Programming Experience Workshop. https://doi.org/10.1145/
3594671.3594681

[12] Timothy Jones and Michael Homer. 2018. The Practice of a Compositional Func-
tional Programming Language. In Asian Symposium on Programming Languages
and Systems. https://doi.org/10.1007/978-3-030-02768-1_10

[13] Marcel R. Karam, Trevor J. Smedley, and Sergiu M. Dascalu. 2008. Unit-level
test adequacy criteria for visual dataflow languages and a testing methodology.
ACM Trans. Softw. Eng. Methodol. 18, 1, Article 1 (oct 2008), 40 pages. https:
//doi.org/10.1145/1391984.1391985

[14] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43, 3,
Article 21 (April 2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[15] Philip J. Mercurio. 2009. Thyrd: An Experimental Reflective Visual Programming
Language. https://thyrd.org/thyrd/paper/.

[16] R. Mark Meyer and Tim Masterson. 2000. Towards a better visual programming
language: critiquing Prograph’s control structures. J. Comput. Sci. Coll. 15, 5 (apr
2000), 181–193.

[17] Roland T Mittermeir, Markus Clermont, and Karen Hodnigg. 2005. Protecting
Spreadsheets Against Fraud. In EUSPRIG.

[18] Charles Moore. 1999. 1x Forth.

https://github.com/Glench/Flowsheets-v2
https://github.com/Glench/Flowsheets-v2
https://doi.org/10.1145/2016656.2016665
https://doi.org/10.1145/2016656.2016665
https://doi.org/10.1145/1094811.1094851
https://doi.org/10.1145/1291151.1291163
https://www.om-language.org/
https://doi.org/10.1145/3135932.3135949
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.1145/3594671.3594681
https://doi.org/10.1145/3594671.3594681
https://doi.org/10.1007/978-3-030-02768-1_10
https://doi.org/10.1145/1391984.1391985
https://doi.org/10.1145/1391984.1391985
https://doi.org/10.1145/1922649.1922658
https://thyrd.org/thyrd/paper/


In-Line Compositional Visual Programming ‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden

[19] Charles H. Moore. 2009. Chuck Moore’s Wonderful colorForth Programming
Language and OS. https://colorforth.github.io/.

[20] Hisham H. Muhammad. 2017. Dataflow Semantics for End-User Programmable
Applications. Ph. D. Dissertation. Pontifícia Universidade Católica do Rio de
Janeiro. https://hisham.hm/thesis/thesis-hisham.pdf

[21] Hisham H. Muhammad. 2019. Userland. http://www.userland.org/.
[22] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi

Chugh. 2021. Filling Typed Holes with Live GUIs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 511–525. https://doi.org/10.1145/3453483.3454059

[23] Raymond R Panko. 2000. Spreadsheet Errors: What We Know. What We Think
We Can Do. In EUSPRIG.

[24] Yves Parès, Jean-Philippe Bernardy, and Richard A. Eisenberg. 2020. Com-
posing effects into tasks and workflows. In Proceedings of the 13th ACM SIG-
PLAN International Symposium on Haskell (Virtual Event, USA) (Haskell 2020).
Association for Computing Machinery, New York, NY, USA, 80–94. https:
//doi.org/10.1145/3406088.3409023

[25] Advait Sarkar, Andy Gordon, Simon Peyton Jones, and Neil Toronto. 2018. Cal-
culation View: multiple-representation editing in spreadsheets. In IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 85–93.

https://doi.org/10.1109/VLHCC.2018.8506584
[26] Marc Schmidt. 2021. Patterns for Visual Programming: With a Focus on Flow-

Based Programming Inspired Systems. In 26th European Conference on Pattern
Languages of Programs (Graz, Austria) (EuroPLoP’21). Association for Computing
Machinery, New York, NY, USA, Article 6, 7 pages. https://doi.org/10.1145/
3489449.3489977

[27] Paul Shen. 2021. natto website. https://natto.dev/.
[28] David Canfield Smith. 1975. Pygmalion: a creative programming environment.

Stanford University.
[29] Scott B. Steinman and Kevin G. Carver. 1995. Visual Programming with Prograph

CPX (1st ed.). Prentice Hall PTR, USA.
[30] Manfred von Thun and Reuben Thomas. 2001. Joy: Forth’s Functional Cousin. In

Proceedings of the 17th EuroForth Conference.
[31] Steve Wilson. 1997. Building a Visual Programming Language. MacTech

13, 4 (1997), 34–40. https://www.mactech.com/articles/mactech/Vol.13/13.04/
Spreadsheet2000/index.html

Received 2024-02-08; accepted 2024-02-26

https://colorforth.github.io/
https://hisham.hm/thesis/thesis-hisham.pdf
http://www.userland.org/
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3406088.3409023
https://doi.org/10.1145/3406088.3409023
https://doi.org/10.1109/VLHCC.2018.8506584
https://doi.org/10.1145/3489449.3489977
https://doi.org/10.1145/3489449.3489977
https://natto.dev/
https://www.mactech.com/articles/mactech/Vol.13/13.04/Spreadsheet2000/index.html
https://www.mactech.com/articles/mactech/Vol.13/13.04/Spreadsheet2000/index.html

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Editing the Program
	3.2 Evaluating
	3.3 Visual Representation

	4 Multiple Tracks
	4.1 Concurrent Tracks
	4.2 Higher-Order Functions
	4.3 Bypassing Operations
	4.4 Error Track
	4.5 Effects

	5 Implementation
	6 Related and Future Work
	6.1 Future Work

	7 Conclusion
	References

