
Multiple-Representation Visual Compositional Dataflow
Programming

Michael Homer
mwh@ecs.vuw.ac.nz

School of Engineering and Computer Science
Victoria University of Wellington

Wellington, New Zealand

Figure 1: The same simple program in two of the three representations of our system. It can be converted to and from each
view at will, as well as to textual code, with smooth animation between, and edited in all three modalities.

ABSTRACT
Many tasks that end users want to accomplish with a computer
program are fundamentally data-flow transformations, and both
visual and textual programming systems have been created to fill
this need, but these are often inflexible, unapproachable, or cum-
bersome, satisfying a niche at one stage of the process but limited
at others. An approach that suits one part of the program, or one
time in its development, may be confounding at another, but the
user is stuck with both the constructive and obstructive aspects of
a tool’s chosen paradigm throughout. Much of this difficulty can be
removed by enabling the cohabitation of multiple editing paradigms
in a single program for the user to choose how to tackle the current
point in the process - and change their mind. We present a new
data-flow programming environment where the same program, or
parts of the same program, can be viewed and edited as linear text,
a node-and-wire graph representation, or a two-dimensional grid
layout, and the correspondence between these representations is
made clear through a continuous visual identity for each part of
the program.

CCS CONCEPTS
• Software and its engineering→ Visual languages; Functional
languages; Data flow languages.

‹Programming› ’23, March 13–17, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Companion
Proceedings of the 7th International Conference on the Art, Science, and Engineering of
Programming (‹Programming› ’23), March 13–17, 2023, Tokyo, Japan, https://doi.org/10.
1145/3594671.3594681.

KEYWORDS
visual programming, dataflow programming, end-user program-
ming, concatenative programming

ACM Reference Format:
Michael Homer. 2023. Multiple-Representation Visual Compositional
Dataflow Programming. In Companion Proceedings of the 7th International
Conference on the Art, Science, and Engineering of Programming (‹Program-
ming› ’23), March 13–17, 2023, Tokyo, Japan. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3594671.3594681

1 INTRODUCTION
Most users of computer systems are not programmers, and do not
want or need to be, but many would like the computer to do things
for them that are not possible with the tools they have. They would
like a system to be slightly more featureful, to have functionality for
a slightly more specific use case, or to automate a part of a process
they currently do by hand. Often these tasks are fundamentally
data-flow transformations: taking some pieces of information and
mechanically transforming them into a new structure or deriving
new data from them.

A number of end-user programming tools have been created to
fill these needs, most popularly the spreadsheet, but also numerous
visual programming environments aiming to relieve the burden of
syntax supposed to be a main obstacle for non-programmers. Many
of these have had some success, but also well-travelled drawbacks:
spreadsheets are error-prone to the point of having an entire con-
ference dedicated to that (EuSpRIG), while visual languages are
often seen as cumbersome to use and reflecting a narrow scope of
use cases [13, 31], and both require a level of abstraction to use well

https://orcid.org/0000-0003-0280-6748
https://doi.org/10.1145/3594671.3594681
https://doi.org/10.1145/3594671.3594681
https://doi.org/10.1145/3594671.3594681


‹Programming› ’23, March 13–17, 2023, Tokyo, Japan Michael Homer

that is often not compatible with how the user thinks about the
problem at hand [11, 21, 25, 32].

A user often thinks in terms of values rather than processes,
conceiving of the task in terms of the values in front of them and
only generalising afterwards. They often find conforming to textual
syntax challenging, with the computer rejecting their attempt on
seemingly-arbitrary grounds. Much of programming training is
about seeing through abstractions, precisely because intuiting par-
allels between similar— but not quite identical — operations is so
alien. The user conceives of the task in terms of their own domain
knowledge, which may not break down in the same places and
ways that a programmer would define it.

Various models have addressed different of these issues:

• Visual programming environments have advantages in avoid-
ing syntax, and depicting the dependencies between parts of
the program, but are generally seen as cumbersome to edit
and difficult to follow in even medium-sized programs [31],
while nonetheless making very explicit the flow of data [4,
32].

• The textual paradigm that most directly expresses data flow
is concatenative programming (where arguments and return
values are passed implicitly), but these are often thought of as
“write only”, relying on hidden abstraction to connect points
in the process, although they also have minimal syntax.

• More recently, the author proposed a grid-based represen-
tation for concatenative programming, and slightly more
general data-flow, that depicts data connections and val-
ues through layout and is edited by selecting displayed val-
ues [16], but it still has inherited limitations on ordering,
despite enabling slightly more expressive programs.

Each of these has advantages and disadvantages, but many of them
are complementary: accessing the strengths of each paradigm can
cover for weaknesses of another, if only it were possible to use
them together or in succession when the occasion suited.

This paper presents a system that allows the user to express
data-flow programs in any of these formats, with a value-first
interaction model, and to pivot between using them at any time.
To ensure that the user understands the connection, relationship,
and isomorphism between these representations, changing view
presents an animated transition where each element of the pro-
gram has a continous visual identity throughout: the cells of the grid
slide to form the words of the text or the nodes of the graph, with
wires and values taking the same path. The visual representations
display intermediate values, and these values are tangible: the
program is edited by manipulating the concrete values, rather than
beginning with abstract concepts of functions or transformations.
They may also be rich, rendered in a native format for values such
as colours or images so that the true data may be seen in-place. The
system permits both “map”ping and “filter”ing operations to be in-
tegrated in one to match the user’s or domain’s mental model of
the task, and both inspecting and evaluating the program at many
input values innately. We argue that this multiple-representation
values-primary approach allows end users to work at the correct
abstraction level for them in the moment, without committing to
it for all time, and even enables professionals building pipeline

programs to focus on the abstractions they need to, rather than
satisfying imperative bookkeeping requirements.

The contributions of this paper are:
• A design for a system permitting editing a program in three
very different modalities and switching between them at
will, aimed at value-focused end users.

• A semantic design fostering data-flow pipeline patterns that
are not easily expressed in existing systems but correspond
to typical domain needs.

• A prototype implementation that runs in a web browser.
The next section sets out some guiding principles of this system,

and Section 3 describes the three representations and the transitions
between them. Section 4 introduces some of the pipeline semantics
supporting the intended programs, and Section 5 discusses the
prototype. Section 6 discusses related work, and Section 7 reflects
on experience using the system and concludes.

2 GOALS AND PRINCIPLES
There are a few guiding principles in play that we will set out briefly
before describing the system itself. Some are obvious and others
more speculative, but for the purposes of this experimentation we
will assume that they are true.

First, that data and values are the most significant aspects of the
program to the (intended) user, and should as much as possible be
visible, tangible, and foregrounded: no work should be required to
display the values and they should be the focus of interaction.

Second, that different perspectives on the same code are useful,
either for a “change of pace” or because the specific task, domain,
or author aligns more naturally with one viewpoint or another.
Use of multiple views has shown value in block-based systems
previously [6].

Third, that the way the user conceptualises and breaks down a
task is often not aligned with the way trained programmers would,
with tasks a programmer would break apart or coalesce seen as
atomic or unrelated.

Finally, that reproducibility is aided by explicit dependencies in
step-by-step development. A problem that arises for end-user pro-
gramming is that it is often easy to obtain a result once, but in such
a way that there is not a path to applying the same process to other
data because the code is transient or hyperspecialised—or worse,
it looks reproducible, but latent state in the development process
made it not so, as is common in notebook-style environments.

The impact of these principles is seen through the next sections.

3 MULTIPLE REPRESENTATIONS
Our system allows viewing and editing programs in three different
modalities, both for different parts of the program code, and for the
same code at different times. Each is discussed in its own section
below, but in short they are:

• Concatenative linear text, where the program or function
body is a sequence of identifiers in the manner of a conven-
tional concatenative language; discussed in Section 3.1.

• Interleaved 2D grid layout, where function calls and the
values they operate on alternate vertically, with data depen-
dencies identified through layout; discussed in Section 3.2.



Multiple-Representation Visual Compositional Dataflow Programming ‹Programming› ’23, March 13–17, 2023, Tokyo, Japan

• Node-and-wire graph format, where functions are repre-
sented as nodes that display their name and output values,
and have connection ports that data dependencies run as
wires between; discussed in Section 3.3.

Both first and last are fairly conventional, while the grid layout
resembles previous work [16]; a key feature, however, is that both
non-linear representations display concrete intermediate values and
invite direct interaction with them. The user can switch between
these views of their code at will, and an animated transition gives
each element of the code a continuous visual identity throughout.
It is always possible to switch to a later view in that list, while each
gains slightly more expressivity and can express some programs
that the previous cannot, so switching upwards is often, but not
always, possible. These transitions are discussed in Section 3.4.

The user can define multiple functions, each given their own
separate tab in the editing environment, and these can call each
other, or be used as the entry point of a data-processing pipeline
(see Section 4). It is possible to write functions in all three modes
and use them all at once. This mutual compatibility implicates some
design choices of each representation, discussed below.

3.1 Linear Concatenative
Concatenative programs pass arguments implicitly, and so the pro-
gram is simply a sequence of words identifying which function is
to be called next; commonly, functions take their arguments off
a global stack, and push their return value(s) to the same stack
for the rest of the code to use1. The term “concatenative” arises
because two programs can be composed—using the output of one
as the input to the other— by appending them together [37]. In this
way they directly express data flow, and encourage breaking the
program down into smaller pieces that can be composed together.

Programs in this form can be cryptic, though also largely “syntax-
free”, consisting only of a list of names, with no special characters
or other constructs; Figure 2 illustrates a trivial example program.
In our system, this modality provides quick entry and editing of
programs, using conventional textual affordances. It is the most
rudimentary of the representations used, and most useful for ei-
ther very simple functions or long linear pipelines of one-to-one
transformations. Concatenative languages are often seen as “write-
only” and cryptic, but we combat this in our system by accepting
it: to read the program, there are two other views that make the
functions, their effects, and the connections between them very
manifest, trading away some concision for much greater clarity.

1Non-stack-based approaches are also possible [20], but are not treated here.

"Hello" length 2 mul

Figure 2: A trivial program in the linear representation. Here,
the literal “Hello” is a nullary function that pushes its value
to the stack, where the length function will consume it and
push 5 in its place. The literal 2 similarly pushes its own
value, and mul takes both of these and pushes their product,
leaving the stack with the value 10 at the end of the program.
All of this is implicit, relying on the user knowing the arity
and role of each function.

Figure 3: A simple program in the grid representation in
our system. Evaluation runs vertically, with functions (dark
grey) below argument and above return values (light grey).
The “drop” zero-output function illustrates new capability in
this version of the grid representation that the original work
did not support. Its function cell tails away into the left of
what would have been its output, while the value to its right
expands to fill the space.

3.2 Grid
The grid representation interleaves functions with the values they
operate on, with each function laid out below its arguments and
above its output(s), building on previous work [16]; the core of
this view aligns with that previous work where it is discussed in
more depth. Alternating rows of functions and values are laid out
in a grid, with functions spread out below the full width of their
arguments, and their return values splitting the space below the
function. An example of the representation is seen in Figure 3.
The argument and return value cells render their values inside, so
that the concrete values and the results of operations on them are
directly visible whenever possible. To edit the program, the user
can drag to select a horizontal range of value cells, and a menu will
present a list of functions that can operate on those values to add
to the program below them. The process is thus focussed on the
values in use, rather than considering the operation to perform first,
and an exploratory style of seeing what can be done with these
available values is encouraged.

The current system includes some extensions to the grid repre-
sentation in previous work, and in particular is able to represent
zero-output functions, which are important for expressing the range
of pipeline operations we wish to support in this work. A function
with no outputs has no output cell in the row below, and instead
the function cell extends into the next row, reducing to a point in
the lower-left corner. Any value cell to the right will expand into
the space vacated by the nullary function, and will be treated as
occupying the full horizontal space of both its natural area and the
area below the nullary function. An example of this in action is
seen in Figure 3 with the “drop” cell in the middle.

This view can represent any program from the concatenative
mode perfectly and provide an alternative view on it, which can



‹Programming› ’23, March 13–17, 2023, Tokyo, Japan Michael Homer

Figure 4: A trivial program in the graph representation. Here,
evaluation occurs left-to-right: the “Length” function’s input
port on the left is connected to the “Hello” string literal’s
output port on its right with the brown edge, and the “Multi-
ply” function node is connected to both the “Length” output
and the “2” number literal’s output with the red edge. The
yellow edge runs to the depicted function’s sole output on
the right-hand side.

also be edited and switched back to the linear concatenative view.
The additional dimension also permits expressing further programs,
however, which are more difficult to express in the concatenative
mode. For example, in a concatenative program only the values at
the top of the stack can be operated on, but in the grid modality
a function may be laid out below any values, without the fiddly
stack-manipulation operations required for this in concatenative
programs. This extra power is convenient, but a function doing
so will not be able to be switched back to the linear view where it
cannot be represented, though the function will be available to use
from any view.

3.3 Graph
The graph representation is akin to a conventional node-and-wire
visual programming environment in the dataflow vein (as opposed
to control-flow languages), but with a strong focus on displaying
the data values being operated on. A node represents a function,
with slots for individual argument inputs on the far left edge. The
values produced by the function are displayed within the node,
in the same fashion as in the grid representation, in their native
format. Output wires run rightward from these values, forming a
complete data-flow graph. A trivial example is depicted in Figure 4.

In this system, edges always flow from left to right: the graph
layout will ensure that all of a node’s dependencies precede it and
all of its dependants follow it, with those above and below having
no direct relationship. This requirement has both a usability and a
semantic basis: it ensures that the sequence of operations is always
clear and minimises the convoluted wire-crossing that can occur in
other graph-based systems, and it also provides manifest layering
that is used for pipeline and flow diversion semantics discussed
later in Section 4. The user will be unable to move a node to a
position that would break this constraint.

The user can click on any output value to add a new edge to the
graph, and choose any compatible input port further right in the
graph to connect to. The prospective wire will be displayed at the
mouse pointer, and an already-occupied target input port will be
disconnected.

Instead, thewire can be droppedmid-screen to add a new function
to the program. A new node for the pending function will appear,

and further wires can be added to it as well, seen in Figure 5a. Once
all the values to be used are connected to this pending node, the
user can select a function able to process those inputs in place and
it will substitute itself for the placeholder. They can also choose to
create a new function of those inputs, which will spawn a new tab
for editing that function.

An output can also be connected on the far right edge as an out-
put of the entire function. An output can be connected to multiple
inputs, but an input can only be connected to a single output.

A few other design decisions were made to accommodate the
other representations of programs. The wire colouring is not se-
mantic, simply assigned to each new edge in turn to make them
distinguishable. However, while programs created in the graph
view may cross wires at will, those native to the concatenative or
grid views will use explicit reordering operations such as “swap”
or “delve” to get values into the right order for the next function.
The graph renderer is aware of such functions (identified by the
shape of type parameters used) and will preserve the wire colour
in the output, as shown in Figure 5b. This permits following the
colour along the graph to see the true connection, just as if the
wire crossing had been drawn directly, while still representing the
program faithfully. Ordinarily, an output edge will be a fresh colour
from any of the inputs, unless the function node has exactly one
input and output.

Again, the graph view is able to represent any program from the
concatenative or grid modality with a direct data-flow view, and
the program can be edited in this view and switched back to the
original view. Again, however, there are also programs that can be
expressed in the graph modality that do not have equivalents in
the other representations without explicit reordering operations
within the program. For example, any wire crossing has no parallel
within the grid view, as all used values must be sequential and in
order, while any output value is used exactly once and cannot be
consumed by two different functions.

While editing programs in the grid view and maintaining lin-
earisability is often done incidentally, compatibility is liable to be

(a) A “pending” node in the graph.
Three input wires have been con-
nected, with an additional slot al-
ways available. Clicking the node
shows a menu of functions with
those inputs to convert into.

(b) The “delve” function is used
for stack reordering in concate-
native mode, cycling the deepest
value to the top. Here this is the
red wire. The other input/output
colours match up also.

Figure 5: Two graph nodes withmultiple connections to them
illustrating different features of the representation.



Multiple-Representation Visual Compositional Dataflow Programming ‹Programming› ’23, March 13–17, 2023, Tokyo, Japan

(1) (2) (3)

(4) (5) (6)

Figure 6: Snapshots of the transition between the grid and graph views. Images (1) and (6) correspond to the program from
Figure 4, while the steps in between show the transition between them.

broken inadvertently in the graph view due to the substantially
wider degrees of freedom provided. Any program in the graph
modality can use functions defined in either of the other modalities,
and the reverse is also true. In this way, a part of a program that
requires additional flexibility can be implemented in the graph,
while the bulk can use another approach, or the graph can be used
for the high-level architecture while individual transformations are
implemented using a different mode.

3.4 Transitions
A selector in the interface allows the user to choose “Text”, “Grid”,
and “Graph” views of the function in the current tab, with the
present one selected by default. When the user chooses another
view, an animated transition occurs taking the corresponding ele-
ments of the present view to their equivalent in the new view. This
animation takes approximately one second, so as to strike a balance
between being fast enough to be unobtrusive and slow enough to
be understandable.

Precisely how the transition occurs depends on the two views
involved. The most substantive is between the grid and graph views,
the two with the most components. Figure 6 depicts points in the
transition: starting in the grid view (1), the function cells morph
to resemble the shape and dimensions of the graph nodes, while
the value cells shrink to match the output components of the graph
nodes, and edges from the current values to their consuming func-
tions appear as the value pass-through grid cells fade away (2).
Reaching the final shape of the graph nodes at the half-way point
(3), they are now only in the wrong location, and (4-5) begin to
move towards their eventual positions, with the edges adjusting
correspondingly to continue to connect the nodes. Finally, the tran-
sition is complete (6), and an additional edge for the function output
appears, as this output is implicit and latent in the grid but explicit
in the graph.

Switching in the other direction is similar, following the reverse
order.

For transitions to and from the linear textual representation,
as only the function names are used in this representation, the
values are not represented, and the connections are implicit, only
these are relevant and participate in the animation. However, the
direct relationship between the grid and textual representations
does allow for a smooth ordering of this movement at the function

Figure 7: A function with parameters in both graph (top)
and grid (bottom) view. A further zero-parameter function,
“Now”, is called in each and is displayed aligned with the
parameter entries.

level, with function names moving to fill out the grid from top-left
down and right, and vice-versa for the other direction, while to and
from the graph they move simultaneously.

4 PIPELINES
Thus far we have looked at the system in terms of how programs
are displayed and edited, but another goal is to allow the code to
be reused to process many data items.

This section discusses the semantics of our system with respect
to data pipelines. These semantics are to large extent severable
from the program representations discussed in the previous sec-
tion. However, both have also been co-designed to complement
each other, so the behavioural effects align closely with the visual
representations.

As far as possible, we do not want the user to need to think about
the mechanics of the pipeline beyond the basic data flow that all
our representations use. Any parameterised function within the



‹Programming› ’23, March 13–17, 2023, Tokyo, Japan Michael Homer

system accepts a sequence of (typed) arguments, analogous to a
row of input data in a pipeline, regardless of the representation
used to create that function. A function of three parameters is seen
in both visual representations in Figure 7. The user can thus write
their code to deal with a single set of values, and it can be slotted
in as a pipeline component consuming such a (partial) row of data.
That is, any function can in effect be “map”ped across a stream of
incoming data.

Within the function, any desired computation can be performed,
and another row of output data is produced. For example, a function
may take two parameters: a string for a person’s name and a date
of birth, and output the name and the person’s current age. This
function would call another function internally to obtain the cur-
rent date, perform the date arithmetic, and pass the name through
unchanged. This function could be used within a pipeline with a
stream of names and dates, but the user need only consider the one
pair of inputs, and in our grid and graph views can even see them
in situ.

4.1 Loading Data
The prototype implementation allows interactively importing a
comma- or tab-separated value (CSV or TSV) file to provide input
rows. Doing so will automatically create a function, in the grid
view by default, that takes the same number of parameters as there
are columns in the file, using column names and inferred types as
available. The user can edit this function as they wish, and scrub
through these rows of arguments to observe their effects on the
output. This function can still be used directly from any other
function by providing appropriate arguments, or all of the resulting
outputs can be computed and displayed at once, or sent on for
further processing.

Conceptually we imagine the system being able to be connected
to external data streams, but the prototype runs entirely in a web
browser and thus cannot do this. Both pre-determined batches
of data and live streams would be possible, with no substantial
difference to the user.

Because this system makes all data dependencies explicit, each
evaluation of a function on a row of data is independent of all others.
We view each original row of input data as conceptually a separate
thread of execution, so loading a CSV file with 100 rows will create
100 threads whose results are collated at the end, or sent on for
further processing later in the pipeline.

4.2 Stopping Threads
We have seen how projecting functions across a stream of data
can be useful. Real-world datasets, however, are often incomplete,
partially invalid, corrupted, or otherwise problematic, and data
cleaning, wrangling, and imputation may be required. For example,
one such issue in our name-birthdate-age example from above
might be that some expected dates are missing or in an invalid
format. A number of approaches are possible there, but a common
one is to discard rows with null entries, potentially logging their
occurrence. Another case where rows may be discarded is when
the date is in the future, which is likely to be an error, or when
performing analyses that require excludingminors from any further
processing.

Figure 8: A thread-stopping function triggering in input val-
ues, in the graph view. The computation does not proceed to
subsequent functions, seen where the “Multiply” function
has no output value displayed, and the dashed line indicates
the threshold beyond which no computation occurred for
this set of inputs.

Any case where rows are not passed forward no longer fits the
“map”model, and is a pattern that is challenging to express in typical
data-flow environments. The conventional functional approach to
such a situation is to compose multiple maps and filters, but these
can be challenging for users who are not programmers to create2.
The two or three parts created may not correspond to a clean
transformation within the problem domain, or the user may need
to repeat precursor steps in both places.

Our model instead allows the user to terminate processing of
this row at any point: they do not need to think of two separate
operations, but can instruct the system to stop based on whatever
criteria they choose, and no further processing will occur (neither
in later steps of a pipeline, nor within the same function). In this
way, the desired domain semantics can be written as-is, and there
is no need to repeat the same logic in a separate filter nor to break
the transformation up.

This “stop” instruction is where the layering seen in the graph
representation, and inherent in the grid representation, comes into
play. All steps in the same layer are independent of one another,
and conceptually executed in parallel (in our implementation, their
substeps may be interleaved, but no code will actualy execute si-
multaneously). No step in a later layer is executed until all in the
previous layer have completed, and if the evaluation is stopped in
that previous layer, execution will not proceed. This ordering is
core and directly visible to the user, avoiding a semantic ambigu-
ity identified by Muhammad [25] in other visual languages where
identical-looking programs can have a meaningfully different order
of execution. This creates a clear point where the user can decide
to stop processing, and a space where the visual representations
can indicate the “high-water mark” of a given execution when il-
lustrating concrete values. When rendering concrete data values,
the point of stopping can be marked, as shown in Figure 8 for the
graph view.

2Another typical functional solution here is to point at the list or option monad, but
“abstract nonsense” may not be helpful to the user already struggling with abstractions.



Multiple-Representation Visual Compositional Dataflow Programming ‹Programming› ’23, March 13–17, 2023, Tokyo, Japan

The prototype includes a number of convenience functions for
this purpose, such as “Stop If Null” and “Stop If True”, but the user
can also create their own. If one function calls another that stops
processing, the first function will also stop, so user-defined domain-
specific discard criteria can be abstracted into named operations as
needed.

4.3 Stream Operations
There will be cases where the user needs to perform operations on
the entire sequence of data, such as sorting. These operations do
not work with individual data items or even rows, and so do not fit
within what we have discussed so far. To support them, we allow
functions to be used at both the ordinary “row” and stream level.

A user-defined function with data attached to it (e.g., from a
CSV) can be called in two ways: providing arguments, to run it as
written on a single row of data as we have seen so far, or with none,
to produce a single output encapsulating the stream of that data as
processed through the function. Stream-level operations such as
sorting threads (by the top of their stack), finding the maximum-
valued row, or aggregating the data can be performed on this value.

These are best used in a zero-parameter function acting as the
entry point for the whole program, but the system does not enforce
this. The user can edit with the same affordances as elsewhere in
the system, and using any of the representations. The system will
display the eventual rows as produced by that stream-level pipeline.

Any function with matching parameters can also be used at
the stream level to project that stream through the function, so
pipelines can be built up from smaller pieces. Different functions
in the same program may operate at either level.

5 IMPLEMENTATION
The prototype implementation is available at http://ecs.vuw.ac.nz/
~mwh/px23/, and works in a web browser. No installation is re-
quired, but source code is available from https://github.com/mwh/
mrvcdp. The code is written in TypeScript and the rendered pro-
gram representations are a dynamically-created SVG. Programs exe-
cute client-side, using promises for each component asynchronously.
An eclectic array of built-in functions is included for experimenting,
but the in-browser execution model is not suitable for handling
large amounts of data. Some pieces of functionality have varied
browser support, notably the animated transitions, which have al-
most no support in current versions of Safari due to the lack of SVG
CSS Path support, while some other aspects have minor functional
or aesthetic differences.

No data is transmitted or saved from the client, although some
provided functions access third-party APIs (such as Wikipedia).
The file chooser in the top right allows loading in data from a local
CSV or TSV file, which is processed in the client, and populates a
drop-down list of data rows to evaluate the program on.

6 RELATED AND FUTUREWORK
Animated transitions between block and text representations have
some currency in block-based programming environments, originat-
ing independently in Tiled Grace [17] and Droplet/Pencil Code [1].
Simultaneous multiple-representation block environments such as
Poliglot [22] also exist; both animated and simultaneous approaches

have difficulties with temporarily-invalid intermediate source code
states, which our system largely avoids, although there are some
permanently incompatible programs with certain views. Projec-
tional editors such as Cedalion [23], Gandalf [12], and Mentor [7]
are an antecedent to multiple-representation environments such
as here, presenting both usability challenges and enhanced affor-
dances to programmers [36]; one has notably been built for the
concatenative language Forth [14]. Generally these involve editing
an abstract syntax tree or similar representation, and then pro-
jecting it into a concrete syntax, but they can also allow for other
visualisations.

Hazel [29] is a live, functional, structural programming environ-
ment with data-flow elements. Code is evaluated around “holes” in
the program, and the editor displays the results of these evaluations,
but code presents as a conventional applicative language. Moore’s
colorForth [24] is arguably a visual AST editor, but has no other
representations.

Several node-and-wire visual languages exist, including those
using the graph edges for both control- and data-flow[19, 25]. Exam-
ples include LabVIEW [8, 28], Simulink [35], Pure Data [3], Yahoo!
Pipes, Unreal Blueprints, and others [9, 32]. A number of musical
tools including both physical and programmatic systems also follow
such an approach [27], and make results audible live. Our system’s
focus on displaying values is distinct from most of these, and no
system we are aware of supports multiple representations in the
manner of this work.

Muhammad [25] analysed the semantics of widespread end-user
dataflow languages, including both spreadsheets and visual systems.
We draw on some insights from this analysis in the behavioural
design of our modalities, notably in establishing a visible ordering
of execution and maintaining display of values.

Spreadsheets are themostwidely-deployed programmingmethod
showing intermediate values [21], and use both specialised textual
syntax and spatial references. Several spreadsheet-derived systems
extend this paradigm with additional representations, types, and
visualisations [2, 10, 30], retaining the core spreadsheet editing and
input cycle. Userland [26] is an integrated dataflow environment
incorporating both spreadsheet cells and Unix shell pipelines, dis-
playing intermediate states. Systems such as Natto [33] provide
a cards-on-canvas aesthetic for working with principally conven-
tional code, equipped with some data-flow connections between
cards and convenient renderers. The Vivide system [34] is a live
dataflow programming environment where interactive widgets are
scripted with Smalltalk, composing programs out of their connec-
tions. All of these approaches provide some level of dataflow and
reactive live programming, with (most) data values visible and avail-
able for further use, though many also have latent values that are
never accessible (such as within a spreadsheet cell calculation).

This project is a continuation of the author’s previous work on
2D representations of concatenative programs [16], value-driven
visual programming [15], and transitioning multiple-representation
environments [18], although no implementation is shared.

6.1 Future Work
In addition to the three representations described in this paper, there
are other representations just beyond the edges of this system that

http://ecs.vuw.ac.nz/~mwh/px23/
http://ecs.vuw.ac.nz/~mwh/px23/
https://github.com/mwh/mrvcdp
https://github.com/mwh/mrvcdp


‹Programming› ’23, March 13–17, 2023, Tokyo, Japan Michael Homer

could be incorporated directly. The textual view is currently just
text, but a block-based editor also makes sense and fits in between
the plain text and grid models. This would allow for higher-level
affordances of the sort provided to the more-visual representations,
and could transition to standard text in exactly the manner of Pencil
Code and Tiled Grace. On the other end of the scale, the graph view
presently is quite constrained. A liberalised graph even without
any semantic addition could permit more non-semantic layout use
(albeit this is precisely the cost affiliatedwith general node-and-wire
systems), or one that decoupled the values from their producing
functions more could allow for a still-more-value-based system in
the manner of our previous work Calling Cards, and user-defined
dashboard layouts. The model also admits additional modalities
that are not necessarily interconvertible with the existing ones,
provided that they can slot into a pipeline with arguments and
outputs. Bespoke interfaces for expressing functions with particular
purposes, such as to perform filtering or type conversion [5], or to
present visualisations of datasets, could be added and used from
programs as others are. Further experimentation and user studies
will help to refine the concepts presented here.

7 REFLECTIONS AND CONCLUSION
First, some assorted reflections and observations of the author from
using the system during and after the development process:

• The grid representation was the most-used middle ground,
though commonly all would be engaged in a single program,
rather than the entirety converging on one approach.

• Switching to any other view became reflexive whenever
there was a pause to consider the next step.

• A first draft or principal pipeline initially dashed off as text
before being refined in another view was a common pattern.

• The main entry point very often settled in the graph view,
even when not required.

• Most functions with substantial edits in the grid, but not
graph, view remained compatible with other views.

• At times, easy graph editing was something of an attractive
nuisance, inviting convenient but incautious changes that
unnecessarily blocked use of other views for that function.

• Graph viewing, however, was helpful for concatenative and
grid functions containing multiple stack-manipulation oper-
ations, where edge colouring could be followed through the
program.

• Any function with a “stop” gravitated towards living in the
graph view except utility “stop if [domain-specific condition]”
helpers, which were rarely looked at again.

• Tabs remembered the mode their function used, but some-
times matching the previously-viewed tab would have been
less jarring.

7.1 Conclusion
We have presented a design and prototype for a programming envi-
ronment aimed at users who are not (intending to be) programmers
supporting data-flow pipelines and focusing on the values under
examination rather than functions or methods. It enables them to
view and edit their program in three very contrasting forms to
suit the particular task at hand and their current mental model.

Understanding of the connection between these views is assured
by giving each element a continuous visual identity and animating
transition between representations, and the semantic model aims
to allow component boundaries to match with the requirements
of the domain. We hope that this concept illustrates the potential
for a new approach to programming environments, and that the
prototype will be useful for exploring the design space further.

REFERENCES
[1] David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens. 2015.

Pencil Code: Block Code for a Text World. In Proceedings of the 14th International
Conference on Interaction Design and Children (Boston, Massachusetts) (IDC ’15).
Association for Computing Machinery, New York, NY, USA, 445–448. https:
//doi.org/10.1145/2771839.2771875

[2] Glen Chiacchieri. 2018. Flowsheets v2. https://github.com/Glench/Flowsheets-
v2.

[3] Bryan W. C. Chung. 2013. Multimedia Programming with Pure Data. Packt
Publishing.

[4] Philip T. Cox and Simon Gauvin. 2011. Controlled Dataflow Visual Program-
ming Languages. In Proceedings of the 2011 Visual Information Communica-
tion - International Symposium (Hong Kong, China) (VINCI ’11). Association
for Computing Machinery, New York, NY, USA, Article 9, 10 pages. https:
//doi.org/10.1145/2016656.2016665

[5] Alexis De Meo and Michael Homer. 2022. Domain-Specific Visual Language
for Data Engineering Quality. In ACM SIGPLAN International Workshop on
Programming Abstractions and Interactive Notations, Tools, and Environments.
https://doi.org/10.1145/3563836.3568727

[6] Wenbo Deng, Zhongling Pi, Weina Lei, Qingguo Zhou, and Wenlan Zhang. 2020.
Pencil Code improves learners’ computational thinking and computer learning
attitude. Computer applications in engineering education 28, 1 (2020), 90–104.
https://doi.org/10.1002/cae.22177

[7] Véronique Donzeau-Gouge, Gilles Kahn, Bernard Lang, Bertrand Melese, and
Elham Morcos. 1983. Outline of a Tool for Document Manipulation. In IFIP
Congress. 615–620.

[8] M. Erwig and Bertrand Meyer. 1995. Heterogeneous Visual Languages—
Integrating Visual and Textual Programming. In Proceedings of Symposium on
Visual Languages. 318–325.

[9] Riley Evans, Samantha Frohlich, and Meng Wang. 2022. CircuitFlow: A Domain
Specific Language for Dataflow Programming. In Practical Aspects of Declarative
Languages: 24th International Symposium, PADL 2022, Philadelphia, PA, USA,
January 17–18, 2022, Proceedings (Philadelphia, PA, USA). Springer-Verlag, Berlin,
Heidelberg, 79–98. https://doi.org/10.1007/978-3-030-94479-7_6

[10] Monica Figuera. 2017. ZenSheet Studio: A Spreadsheet-inspired Environment
for Reactive Computing. In Proceedings Companion of the 2017 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Vancouver, BC, Canada) (SPLASH Companion 2017). ACM,
New York, NY, USA, 33–35. https://doi.org/10.1145/3135932.3135949

[11] Valentina Grigoreanu, Margaret Burnett, SusanWiedenbeck, Jill Cao, Kyle Rector,
and Irwin Kwan. 2012. End-user Debugging Strategies: A Sensemaking Perspec-
tive. ACM Transactions on Computer-Human Interaction 19, 1, Article 5 (May
2012), 28 pages. https://doi.org/10.1145/2147783.2147788

[12] A N Habermann and D Notkin. 1986. Gandalf: Software Development Environ-
ments. IEEE Transactions on Software Engineering 12, 12 (Dec. 1986), 1117–1127.
http://dl.acm.org/citation.cfm?id=15550.15552

[13] Ian Hellström. 2016. The problems with visual programming languages in data
engineering. https://databaseline.tech/the-problems-with-visual-programming-
languages-in-data-engineering/.

[14] Ulrich Hoffmann. 2019. Forth Projectional Editing. In EuroForth 2019.
[15] Michael Homer. 2022. Calling Cards: Concrete Visual End-User Programming.

In Programming Experience Workshop. https://doi.org/10.1145/3532512.3535221
[16] Michael Homer. 2022. Interleaved 2D Notation for Concatenative Programming.

In ACM SIGPLAN International Workshop on Programming Abstractions and In-
teractive Notations, Tools, and Environments. https://doi.org/10.1145/3563836.
3568722

[17] Michael Homer and James Noble. 2013. A tile-based editor for a textual pro-
gramming language. In Proceedings of IEEE Working Conference on Software
Visualization (VISSOFT’13). 1–4. https://doi.org/10.1109/VISSOFT.2013.6650546

[18] Michael Homer and James Noble. 2017. Lessons in Combining Block-Based and
Textual Programming. Journal of Visual Languages and Sentient Systems Volume
3 (2017). https://doi.org/10.18293/VLSS2017-007

[19] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in
Dataflow Programming Languages. ACM Comput. Surv. 36, 1 (mar 2004), 1–34.
https://doi.org/10.1145/1013208.1013209

https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875
https://github.com/Glench/Flowsheets-v2
https://github.com/Glench/Flowsheets-v2
https://doi.org/10.1145/2016656.2016665
https://doi.org/10.1145/2016656.2016665
https://doi.org/10.1145/3563836.3568727
https://doi.org/10.1002/cae.22177
https://doi.org/10.1007/978-3-030-94479-7_6
https://doi.org/10.1145/3135932.3135949
https://doi.org/10.1145/2147783.2147788
http://dl.acm.org/citation.cfm?id=15550.15552
https://databaseline.tech/the-problems-with-visual-programming-languages-in-data-engineering/
https://databaseline.tech/the-problems-with-visual-programming-languages-in-data-engineering/
https://doi.org/10.1145/3532512.3535221
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.1109/VISSOFT.2013.6650546
https://doi.org/10.18293/VLSS2017-007
https://doi.org/10.1145/1013208.1013209


Multiple-Representation Visual Compositional Dataflow Programming ‹Programming› ’23, March 13–17, 2023, Tokyo, Japan

[20] Timothy Jones and Michael Homer. 2018. The Practice of a Compositional Func-
tional Programming Language. In Asian Symposium on Programming Languages
and Systems. https://doi.org/10.1007/978-3-030-02768-1_10

[21] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43, 3,
Article 21 (April 2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[22] Žiga Leber, Matej Črepinek, and Tomaž Kosar. 2019. Simultaneous multiple
representation editing environment for primary school education. In 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 175–
179. https://doi.org/10.1109/VLHCC.2019.8818927

[23] David H. Lorenz and Boaz Rosenan. 2011. Cedalion: A Language for Language
Oriented Programming. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications (Portland,
Oregon, USA) (OOPSLA ’11). ACM, New York, NY, USA, 733–752. https://doi.
org/10.1145/2048066.2048123

[24] Charles H. Moore. 2009. Chuck Moore’s Wonderful colorForth Programming
Language and OS. https://colorforth.github.io/.

[25] Hisham H. Muhammad. 2017. Dataflow Semantics for End-User Programmable
Applications. Ph. D. Dissertation. Pontifícia Universidade Católica do Rio de
Janeiro. https://hisham.hm/thesis/thesis-hisham.pdf

[26] Hisham H. Muhammad. 2019. Userland. http://www.userland.org/.
[27] James Noble and Robert Biddle. 2002. Program Visualisation for Visual Programs.

In Proceedings of the Third Australasian Conference on User Interfaces - Volume 7
(Melbourne, Victoria, Australia) (AUIC ’02). Australian Computer Society, Inc.,
AUS, 29–38.

[28] Mark Noone and Aidan Mooney. 2018. Visual and Textual Programming Lan-
guages: A Systematic Review of the Literature. Journal of Computers in Education
5, 2 (2018), 149–174.

[29] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling Typed Holes with Live GUIs. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Imple-
mentation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 511–525. https://doi.org/10.1145/3453483.3454059

[30] Advait Sarkar, Andy Gordon, Simon Peyton Jones, and Neil Toronto. 2018. Cal-
culation View: multiple-representation editing in spreadsheets. In IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 85–93.
https://doi.org/10.1109/VLHCC.2018.8506584

[31] Robert Schaefer. 2011. On the Limits of Visual Programming Languages. SIGSOFT
Softw. Eng. Notes 36, 2 (mar 2011), 7–8. https://doi.org/10.1145/1943371.1943373

[32] Marc Schmidt. 2021. Patterns for Visual Programming: With a Focus on Flow-
Based Programming Inspired Systems. In 26th European Conference on Pattern
Languages of Programs (Graz, Austria) (EuroPLoP’21). Association for Computing
Machinery, New York, NY, USA, Article 6, 7 pages. https://doi.org/10.1145/
3489449.3489977

[33] Paul Shen. 2021. natto website. https://natto.dev/.
[34] Marcel Taeumel, Michael Perscheid, Bastian Steinert, Jens Lincke, and Robert

Hirschfeld. 2014. Interleaving of Modification and Use in Data-driven Tool
Development. In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Portland,
Oregon, USA) (Onward! 2014). ACM, New York, NY, USA, 185–200. https://doi.
org/10.1145/2661136.2661150

[35] The MathWorks, Inc. 2022. Simulink. https://www.mathworks.com/products/
simulink.html.

[36] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014. Towards
User-Friendly Projectional Editors. In Software Language Engineering, Benoît
Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer
International Publishing, Cham, 41–61.

[37] Manfred von Thun and Reuben Thomas. 2001. Joy: Forth’s Functional Cousin. In
Proceedings of the 17th EuroForth Conference.

Received 2023-01-22; accepted 2023-02-06

https://doi.org/10.1007/978-3-030-02768-1_10
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/VLHCC.2019.8818927
https://doi.org/10.1145/2048066.2048123
https://doi.org/10.1145/2048066.2048123
https://colorforth.github.io/
https://hisham.hm/thesis/thesis-hisham.pdf
http://www.userland.org/
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1109/VLHCC.2018.8506584
https://doi.org/10.1145/1943371.1943373
https://doi.org/10.1145/3489449.3489977
https://doi.org/10.1145/3489449.3489977
https://natto.dev/
https://doi.org/10.1145/2661136.2661150
https://doi.org/10.1145/2661136.2661150
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

	Abstract
	1 Introduction
	2 Goals and Principles
	3 Multiple Representations
	3.1 Linear Concatenative
	3.2 Grid
	3.3 Graph
	3.4 Transitions

	4 Pipelines
	4.1 Loading Data
	4.2 Stopping Threads
	4.3 Stream Operations

	5 Implementation
	6 Related and Future Work
	6.1 Future Work

	7 Reflections and Conclusion
	7.1 Conclusion

	References

