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Figure 1: Program that retrieves randomWikipedia thumbnail.

ABSTRACT
Creating a program that performs even a simple task and shows
the result is unapproachable to most people, and even trained pro-
grammers face a burden to create a new program. In this paper, we
introduce a prototype system and model for live visual dataflow
programming where intermediate steps are visible and all compo-
nents are tangible and manifest. Our system aims to allow a user
to dive in and immediately have a working program that can be
incrementally extended.

CCS CONCEPTS
• Software and its engineering → Visual languages; Data flow
languages.

KEYWORDS
end-user programming, exploratory programming, visual program-
ming, dataflow programming
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1 INTRODUCTION
An end user wanting to instruct the computer to perform a simple
task, or to retrieve, slightly process, and show some data, faces
a daunting task. Even programmers have a significant burden in
creating a new program, and debugging missed data-processing
steps is a complex hassle. We have developed a visual programming
approach that allows live coding, makes all intermediate steps visi-
ble and immediately available for further use, and lets the user stop
at any time with the fruits of their labour on display.

A key goal of this system is to have data values in use be manifest,
tangible, and visible. This has three purposes:

• to have the state be apparent so that the full computational
flow can be inspected;

• to have potential intermediate results always available for
incremental extension;

• and finally that simply displaying the data may be the point.
Our system is essentially a data-flow programming environ-

ment: individual displayed “cards” take in input at the top and emit
output at the bottom, usually displaying their principal output in
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between. Each card represents a transformation step, and the user
can compose the transformations they want piece-by-piece, always
incrementing from a known point they can see, and always able to
reconfigure previous steps or remove later ones.

By keeping the intermediate values on display we hope to make
thinking about the next and previous step easier, and by updating
whole system live as it changes we hope to make the effects of
modifications readily apparent. Displaying by default and movable
cards also let users create a tailored space displaying exactly what
they want, and exposing just the actions that they want, without
needing a separate space. The boundary between “programming”
and “customisation” is thus blurred, we argue for the better.

The prototype of the discussed system is available in any web
browser at https://mwh.nz/demos/px2022. On first visit, it will load
a demonstration program making use of some facets of the system.
Subsequent page loads will restore the last state.

The next section discusses the computational model of the sys-
tem, setting aside the visual and user-interaction elements for the
moment. Section 3 discusses the practical realisation of the user
interface in our prototype, then Section 4 elaborates on the mech-
anisms for creating new cards in the system. Section 5 contains
discussion and positions this project among some related work,
while Section 6 concludes and identifies future explorations.

2 THE MODEL
The operating environment is an open space that can contain any
number of cards. A card has a title, zero or more inputs, zero or
more outputs, and usually a body.

Both inputs and outputs have labels, to identify them to the user.
An input also has a specified type or types of data it can accept.
Similarly, an output has a type of data it emits. Any input can be
connected to a compatible output, but an output can connect to
multiple inputs.

The card has a dual role, depending on the perspective one takes:
(1) In one sense, the card “is” what is in the body: its outputs are

renditions or transformations of that body, and a connection
to the card is a connection to the data it holds.

(2) In another sense, a card represents a computational node:
taking in data from its inputs, it produces some result, which
is the body, and makes the result or components of it avail-
able through its outputs.

In the first sense, there is thus a concrete value currently associated
with every card, which is expected to be relatively long-lasting—
not a fast-moving stream pipeline, but specific pieces of data being
manipulated.

In the second sense, cards and connections form a compositional
functional programming language [16] with variable-arity func-
tions joined together.

We leanmore to the data-primary viewpoint in the design choices
of the system, but both have validity, and both are simultaneously
true.

2.1 Behaviour
Precisely what a card does with its inputs, or where any outputs
come from, is not restricted by the model, and cards may work at
very high or very low abstraction levels. Instead, for any specific

purpose an integrator is expected to choose a coherent set of cards
to make available for the intended users.

The cards serve the dual role of representing data values and
transformation steps. A card has contents, which ambiently exist,
and may be displayed (or not); a card also has outputs, which derive
from its content, and may be routed for use elsewhere (or not). On a
conceptual level, initial data values can be thought of as files stored
on the system, a card displaying that value as the result of opening
that file, and outputs as structured means of “zooming in” on facets
of the data that were not originally clearly visible. On a practical
level, cards do take inputs like function parameters and produce
outputs like (multiple, named) function return values by executing
arbitrary code in between.

Only explicit input–output connections communicate between
cards, and that communication is routed via a “kernel” component
that handles multiplexing, retaining current values, and tracking
the global picture of what is happening within the program. This
indirection serves to prevent any inadvertent latent dependency
on the specific implementation of another card being introduced,
so that new cards can always expect to interoperate with existing
ones. It also provides metadata insight into what is happening in
the system, which can be exposed through special cards.

In the current implementation, card behaviour is primarily im-
plemented in JavaScript (matching the host system), but the model
does not rely on any particular host language or environment.

2.2 Types
At the abstract level, the type of data being exchanged is opaque,
but to interact and edit the system needs to understand the data
in use. In the current prototype, supported types include text, pic-
tures, numbers, tables, JSON objects, sequences, maps, and arbitrary
binary data.

An input can be specified to accept multiple types, and the card
can adjust its behaviour according to what it receives. An output
always has a concrete type.

3 THE USER INTERFACE

Figure 2: A simple “sum” card with one input for a sequence
of numbers, and one output for the sum. The output value is
displayed in between for the user.

As displayed on screen, shown in Figure 2, there are three sec-
tions of each card:

(1) a “title bar” of sorts with a unique background colour, dis-
playing at least the title and some user-interface controls,
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along with any inputs of the card displayed as individual
buttons;

(2) the body, which usually displays a visible rendition of one
of the outputs, and is generally the tallest area;

(3) the outputs, each displayed in the same fashion as inputs.
It is possible for there to be no inputs, no outputs, or no body. Each
card in the system is identified by a unique colour in its title bar.
When an input on a card is connected to an output, the input’s
colour changes to match the card the output belongs to.

Cards can be laid out on screen arbitrarily by drag-and-drop
with pixel positioning, like windows in common GUI systems. The
layout is not semantic and can be adapted to suit what the user
wants to have visible, or to group related cards together. A cross in
the upper left permits closing and removing a card.

The “body” for most cards will be its principal output rendered
in a human-friendly form, in line with the goal of all data being
manifest and visible. The default is that the first or only output is
used directly for the body. The user interface understands how to
render various types of value automatically, so for example out-
putting an image will result in the image being displayed, while
outputting a “table” value (an ordered group of columns) will cause
a standard table display.

Each card has a control in the top-right corner to “flip” the card
and display the (notional) back. The back of the card contains meta-
settings, including for every card a toggle for displaying the body
or not (so that larger or repeated displays can be omitted if the user
prefers). Some cards provide additional secondary settings that are
also displayed on the back of the card.

3.1 Card Connections
There is no direct visible representation of the graph of card connec-
tions, because this becomes obstructive with even a small number
of cards (see an example in Figure 4). However, input buttons do
indicate where their input comes from by both colour and label.
An input takes on the hue of the card that owns the output it is
connected to, and also copies and displays the label of that output.
This is visible at all times and makes it possible to follow the trail
of connections passively, visible in Figure 3.

When more direct indication is required, hovering the mouse
pointer over an input button will display an overlaid arrow from the
corresponding output, and will highlight the output button itself.
There is also a hidden feature to show all arrows at once “tube
map”–style by holding “C”; this was used to produce Figure 4 and
Figure 8, but is too unwieldy to be enabled routinely.

At present, there are three ways to form a connection between
cards:

(1) by drag-and-drop from an output button to an input button;
(2) by point-and-click, on an output button and then an input

button;
(3) by creating a new card with a connection already in place

through double-clicking an output and choosing a suggested
type-compatible card from the resulting menu.

In all cases, only type-compatible connections can be formed,
and no connection that would create a cycle where a card depends
on its own output is permitted. Both dragging and clicking cause
the compatible inputs to be highlighted and incompatible inputs

dimmed, and highlight a compatible input further when the pointer
is over it. Point-and-click displays an overlay arrow from the output
to the pointer so that it is clear which output is to be connected.

We expect that future experimentation may result in removing
either drag-and-drop or point-and-click, as these are fully redun-
dant with one another. Previous work has suggested drag-and-drop
can be a problematic interaction paradigm [9, 13, 15], but also that
it may be both expected and preferred by younger users [3].

3.1.1 Typeable Inputs. Some inputs are marked “typeable”. These
inputs present with a text-entry field within the input button as
seen in Figure 5, and the contents of this field are used as the input.
Such an input may still be connected in the ordinary way, and that
connection will supplant the typeable field. These fields exist to
simplify construction of programs with simple text configurations,
like a textual filter or URL retrieval.

3.2 Instantiating Cards
In the present prototype, new cards can be created by double-
clicking the background to open a menu of all available cards.
Double-clicking on an output button also produces a menu of sug-
gested compatible cards that could accept the type of that output.
Selecting one of those cards will add a new card to the world with
that output connected to one of the new card’s inputs.

Each new card is allocated a unique hue, used for the title bar,
connected inputs, and overlaid arrows. The card is initially placed
in an available empty space on screen, starting from the top left.
Any inputs not connected are initially green and labelled with their
purpose. Depending on the card, it may require all inputs to be filled
before its outputs are active, but it is possible to form connections
from those outputs from the beginning.

3.3 Using Cards
In the prototype, we have implemented many cards for experimen-
tation, across a broad range of abstraction levels. The selection to
date has been demand-driven: what would be an interesting thing
to try, or would help to investigate the behaviour of the system,
and what cards would support that? Similarly, at times the system
(particularly the UI) has been extended to facilitate behaviours that
would be convenient for cards.

Existing cards include, among others: Text-entry and numeric-
entry cards for single values; Low-level arithmetic with sum, prod-
uct, difference, and quotient outputs; Statistical calculations on
numeric sequences; Converting CSV input to tabular data, and ta-
bles to JSON text; Displaying any input value, with no outputs;
Outputting the time every second, with no inputs; Fetching a web
resource from a URL, and making HTTP posts of data to a URL;
Constructing a sequence of values from multiple individual inputs,
dynamically created; Exposing fields of a JSON object as individual
outputs, dynamically created; Embedding another textual language
(jq [17]) within the processing pipeline; File input, permitting a
local file to be accessed in the system; An image input, permitting
direct entry of image data as part of the program.

The live prototype includes almost all currently-developed cards
at once, although we would expect real-world use to use tailored
subsets. The nature of the programming model here permits ele-
ments like images, which are segregated second-class items in most
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Figure 3: A program of four cards and four connections: one from the orange text entry card to the blue CSV card, two from the
blue to the purple maximum card, and one from the blue to the green stats card, all indicated by the colour of the input button
matching the source card’s title bar.

Figure 4: Connections between several simple cards displayed
as overlaid arrows in a non-standardmode. The arrowswould
not ordinarily be visible all at once, but illustrate the range
of interconnections.

Figure 5: A “URL fetch” card with a typeable URL input field.

languages, to be included within the program itself on equal terms
with text and numbers.

4 CREATING CARDS
The current prototype operates as a web page, where executable
code is in JavaScript. Cards can be implemented as JavaScript classes
inheriting from a Card superclass, which provides useful default
behaviours. For example, a trivial “add two numbers” card could be
implemented as in Figure 6, setting up the properties of its inputs

and output in the constructor by assignment, and overloading the
calculate method to generate the result.
The Card class ensures that calculate is called each time the

inputs are updated. JavaScript proxies [6] and properties provide
“assignment” syntax for manipulating inputs and outputs. More
advanced cards could directly subscribe to input changes or use
arbitrarily-more-complex code to implement whatever behaviour
is desired.

The superclass, and its inputs and outputs fields, have been
built to support the possibility that the author of a card is not a
confident programmer. Some behaviours are “magical” or automatic,
such as creating an input when it is referenced, so that copy-and-
paste amateur programming has a chance of producing something
useful with minimal syntactic overload. The idea here is that the
users of the visual system may span a range, with some using
exclusively the visual system and others taking on a “local expert”
role tweaking custom cards for their environment.

A card can create, remove, and alter inputs and outputs dynami-
cally. For example, we have an “Object Navigator” card that accepts
a single JavaScript/JSON object as input, and has an output for every
key in that object. This card permits an object tree to be navigated
and connected within the main system in the usual way, and can
create potentially very many outputs according to the input value.
An input connected to an output that is removed is disconnected,
in the same way that it would be if the source card were removed.

4.1 JavaScript Card
There is also a “JavaScript Card” that permits creating a new arbi-
trary card from within the system. This card has space on the back
to provide both “setup” code and “calculation” code, corresponding
to code in the constructor and calculate method above. The card
updates immediately when its code is modified, permitting live
prototyping and experimentation. We use this card to explore and
experiment with additional card ideas before forming them into
permanent concrete cards, but it can be used for its own purposes
as well to create bespoke cards and behaviour.
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1 c l a s s AddCard ex t ends Card {
2 c o n s t r u c t o r ( i n i t ) {
3 super ( i n i t )
4 th i s . i n pu t s . number1 . type = 'number '

5 th i s . i n pu t s . number1 . l a b e l = 'Number 1

'

6 th i s . i n pu t s . number2 = {
7 type : 'number ' ,
8 l a b e l : 'Number 2' ,
9 }
10 th i s . o u t pu t s . sum = { type : 'number ' ,

l a b e l : 'Sum' }
11 }
12 c a l c u l a t e ( n1 , n2 ) {
13 th i s . o u t pu t s . sum = n1 + n2
14 }
15 }

Figure 6: A trivial “add two numbers” card implemented in
JavaScript. The backend library of our system permits simple
assignments to cause the inputs and outputs to be created
and updated.

Once more, this card also anticipates use for small bespoke ex-
tensions by the end user, and exposes the same magic inputs
and outputs functionality. It nonetheless exposes the standard
JavaScript API, and so can fetch web resources, spawn worker
threads, set timeout callbacks, and so forth, enabling advanced
custom behaviours.

4.2 Nesting
Subprograms can be nested inside the “container card”. This card
provides a separate canvas that can be opened, edited, and closed,
and can contain as many cards and connections as desired. Spe-
cial “Input” and “Output” cards, available only within these nested
subprograms, create connection points on the container itself, and
can be connected to other cards within the container. The inner
world is isolated from the outside otherwise, and direct connections
cannot be made across the boundary. Only the explicit inputs and
outputs are able to communicate.

From the “outside”, the container card is an ordinary card, that
can been moved around and have connections made to or from
it. The innards are not visible in the outer world, though they are
part of the same overarching program. A complex program may
thus be created exploratorially and then abstracted into a single
card, opaque to the outside, and tidied out of the way of the main
operating space. Figure 7 shows such a subprogram as it appears
from the outside. Clicking the button would zoom in on the pictured
subprogram as shown in Figure 8, allowing it to be edited just as
the main program is, and these edits would also take effect live.

Custom cards can thus be assembled using only the mechanics of
the system itself, with whatever behaviour can be produced using
the other available cards. These are not so easily converted into
permanent cards of the system, and so suit more bespoke use cases.

Figure 7: A submodule of a program isolated as a single card,
here rendering the contained program within the card.
This figure is approximately actual size: the scaled-down
image of the subprogram is rendered within the button at
quarter size, illustrating structure but not readable textual
content.
Figure 8 shows the contained subprogram, rearranged to
show the entire program and how the input and output are
created.

They are able to compose the very high-level operations of other
cards directly and so condense a large amount of backing source
code into a single unit.

4.3 Remote Cards
The prototype also allows cards to be backed by a WebSocket con-
nection, a two-way communication channel to a web server. This
feature exists to support some actions that are not available within
a web browser, but it also permits the remote implementation to
use any technology, and simply speak the JSON-based protocol sent
over the socket. We have not implemented any cards using other
languages at this stage.

5 DISCUSSION AND RELATEDWORK
Displaying all data by default places some constraints on the viable
programs that can be built. Cards can simply be very large (our
prototype caps how much of the screen can be occupied by a single
card before scrolling is introduced, but it is still necessarily large).
Substantial “batch” processing tasks, of the sort that many dataflow
pipelines are used for, are not well-supported in this system. Its
expectation of long-lived displayed data that is intrinsically “part” of
the program works against this, while for most dataflow models at
least some input data is provided from the outside and the program
applied to it. The prohibition on cycles also prevents the present
system from being Turing-complete (though a card may provide
Turing-complete functionality in itself). Extending the system with
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Figure 8: The submodule from Figure 7 in its full editable size, rearranged to include the full program and the optional overlaid
connecting arrows. When this pop-up editor is closed, it scales down to appear in a card in the main program with a single
input “Language Name” and a single output “Logo”.
The two “Input” and “Output” cards at the top generate and label the connection points on the submodule card seen earlier.
Connections from and to those cards communicate between the outside world and the subprogram here.

recursion, named subprograms, or alternative connection types
remains future work.

We regard these limits as setting the scope of the tool and what
is built within it. The option to hide the body of chosen cards allows
shrinking redundant displays, but a program that is too large to
fit on screen comfortably is also too large to be comprehensible in
this model. Shifting part of the program into a nested container,
isolated with well-defined boundaries, is encouraged implicitly by
the need for on-screen space.

Similarly, seeking a well-matched set of available cards at the
right abstraction level —whether creating those cards is something
the user can do themeselves or not— is important to a productive
experience in this system. These needs may change over time, and
the integrator can make higher- or lower-level cards available as
needed, allowing subtasks to move out of the card language and
into a conventional programming language.

However, some tasks may simply not be suitable for this system,
and that is not a problem either. We see two main purposes for this
sort of environment: exploratory development, where the always-
concrete data model facilitates very direct querying (an “explo-
ration” or “programming” purpose), and building a bespoke “dash-
board” space to show exactly the information or actions needed,
without relying on precisely the right components having been

built already (a “customisation” purpose). These are not cleanly
distinguished and represent a continuum where the same act could
be analysed as exploration, programming, or customisation; we
would even argue that as far as possible this system is not for pro-
gramming, despite producing programs. In both cases, a partial
program is also a complete program with a partial result, and the
self-limiting nature of the display highlights where further modu-
larity or abstraction are needed, avoiding the Deutsch limit of too
many items on screen by limiting the program to too few.

The most direct influence on this system was some previous
work we had done using the Lively Kernel [22, 32]. The Lively
Kernel provides a JavaScript-based “operating system” analogue
with separate programs and a conventional windowed environment,
largely unlike this system, but includes a live that pointer referring
to the program the user most-recently interacted with [31]. In our
work [10] we had utilised this pointer to create live data connec-
tions between separate applications within the shared JavaScript
runtime environment through direct object manipulation. Unlike
the present work, these connections were not intended or facil-
itated by the applications or host system and represented more
of a hostile extension. Some subsequent work in Lively, such as
WebWerkstatt [20], and the earlier and ongoing Fabrik [14], steer
more in the direction of modelling data flow, continuing a focus
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on the application programming side. This work also drew from
experience building a parallel graphical language for cellular au-
tomata [21], which highlighted issues of scale and always-visible
connections.

As part of research laboratory Ink & Switch’s “Capstone” ex-
periment one of a series of prototypes had “data pipelines” [18]
resembling our system, including cards with “uses” (input) and
“exposes” (output) ports. This was the most similar system to our
work, and while they moved on from this prototype to more con-
ventional programming swiftly, including for some of the spatial
reasons above, we agree with the direction it was going. Our system
facilitates the same kind of connections, albeit with a deeper inves-
tigation including nested subprograms and cards fully isolated from
one another. Our view is that the spatial issues are addressed by
modular nesting, further abstraction, and the self-limiting nature
of available space.

A number of flow-chart-style box-and-line visual languages ex-
ist, including those using the graph edges for both control- and
data-flow. Examples include LabVIEW [7, 26], Simulink [33], Pure
Data [5], Yahoo! Pipes, and Blender’s several node graphs. A num-
ber of musical tools also follow such an approach [25], including
physical modular synthesisers. Our system’s focus on exposing a
single current value at each stage, and focusing the nodes on those
values themselves, is distinct from most of these. In most cases, the
goal of these systems is to express a repeated process, rather than
to represent a current state as in our approach. In this work all
editing is fully live, with no run-edit distinction.

Apple’s Shortcuts language [1] presents a linear top-to-bottom
flow where dynamic “variables” can be selected to use one of the
outputs of a previous “action”, and any action can have many pos-
sible outputs. Similarly to our system, no direct visual connection
between the origin and its use is made ordinarily, but icons and
colouring suggest likely links. Shortcuts by nature expects the pro-
gram to run many times with unknown data and so does not have
facility to display values or live-edit the running program.

The most widely-used programming system displaying interme-
diate values is the spreadsheet [19], which uses specialised textual
syntax alongside spatial references. Several spreadsheet-derived
systems extend this paradigm to provide multiple-representation
reactive programming environments with additional data types,
visualisations, and classical programming functionality [4, 8, 27], re-
taining the core spreadsheet editing and input cycle. Userland [24]
provides an integrated dataflow environment incorporating both
spreadsheet cells and Unix shell pipelines, with visual representa-
tions of intermediate states. Systems such as Natto [29] provide
a cards-on-canvas aesthetic for working with principally conven-
tional code, equipped with some inter-card data connections and
convenient renderers including tables, images, and JSON values.
The Vivide system [30] is a live dataflow programming environ-
ment where interactive widgets are scripted with Smalltalk, and
programs can be composed out of many arbitratily-powerful wid-
gets outputting their chosen data to one another. This flow of data
is arranged by the end user, but a widget is not identified with its
present data value. All of these approaches provide some level of
dataflow and reactive live programming, with (most) data values
visible and available for further use. These all have a more explicit
“programming” phase contrastingwith our system and the Capstone

prototype, but consequently expose more power directly within
the system. Our present system focuses on avoiding even this level
of traditional programming exposure, but more hybrid approaches
seem to have merit.

Parts of the “operating system” side of this model are reminiscent
of aspects of the Plan-B research system, notably the original “box”
filesystem [2], where typed “boxes” (files) could be connected to one
another such that accesses to onewere relayed through a translation
operation to the other. Our system currently focuses only on what
is displayed on screen, rather than a persistent filesystem behind it,
but on a conceptual level we do see the data values as primary and
related in a similar way.

6 CONCLUSIONS AND FUTUREWORK
We have presented a prototype system and model for exploratory
data-flow programming using a system of “cards”, where intermedi-
ate values are visible, manifest, and tangible. Our prototype operates
in a web browser at mwh.nz/demos/px2022 and supports a range
of different cards providing both high- and low-level operations.
The operating model anticipates users across multiple levels of skill
and investment, including those approaching being conventional
programmers, and envisages curated sets of operational cards made
available according to the application domain of the user.

6.1 Future Work
We plan multiple user experiments with this system, both address-
ing the user interface itself (which has evident flaws at present) and
the overall model of the system. In particular, the system currently
supports both point-and-click and drag-and-drop connections be-
tween cards with entirely different appearance and interaction: we
anticipate that one or other of these will be removed if the alter-
native proves more usable or clear. We also intend to explore user
intentions and desires for what can be done in the system, with
regard to the types of program/custom display that can be created.

The strong separation between cards via the intermediated ker-
nel provides both positive and negative elements. We intend to
explore both strengthening and weakening this quasi-“microkernel”
approach to see what helpful programming and interaction models
may arise from it.

We plan to investigate forming existing and additional cards
into coherent subsets for specific users, establishing the level of
abstraction and types of operation that are needed. It is unclear
whether entirely-separate domain-specific languages or a language-
level module or dialect system, [11], are the appropriate way to
support the range of use cases, or whether in the operating-system
vein this is more of a “package manager” problem which transcends
layers [23] and may be either separated or integrated. Each of these
approaches has points in favour and against, and further real-world
experience is needed to determine which mechanism is suitable
when.

The visual editor exposes a range of functionality to end users,
novices, or non-programmers, but such interfaces are notoriously
tiresome and frustrating for experts. A textual mode would allow
these experts to construct pipelines in a more traditional “pro-
gramming” manner while remaining entirely within the execution
and data model. In representing a data-flow system, this textual
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language would most naturally fit within the concatenative or com-
positional [16] mould, structured by chaining together transfor-
mative steps to realise a result. This textual representation could
be dynamically convertible to and from the visual representation
in the manner of Tiled Grace [12, 28] to permit different editing
approaches for different tasks to those users comfortable with both,
or for expert users developing cards or subprograms for others.

Finally, although the present prototype allows encapsulating sub-
programs within a single card, these only compact an explicit por-
tion of the dataflow graph. Extending the system to allow reusable
abstractions, and additional types of inter-card connection for op-
erations in the manner of higher-order functions, loops, and par-
allelism is another active area of work in collaboration with some
industrial applications.

We hope that such findings may have broader applicability to
other end-user systems.
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