
Blocks, Blocks, and More Blocks-Based Programming
Ben Selwyn-Smith

Oracle Labs
Brisbane, Australia

benselwynsmith@gmail.com

Craig Anslow
Victoria University of Wellington

Wellington, New Zealand
craig@ecs.vuw.ac.nz

Michael Homer
Victoria University of Wellington

Wellington, New Zealand
mwh@ecs.vuw.ac.nz

Abstract
Blocks-based programming is a commonway to teach novices
how to program. However, there are many block-based lan-
guages to choose from. This paper reviews Block-Based Pro-
gramming Languages (BBPLs), takes a detailed look at a
number of existing BBPLs including their features and com-
paring and contrasting these languages. Finally, through a
number of research questions, this paper evaluates the cur-
rent state of the art and points out areas for potential further
research.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages; • General and reference→
Surveys and overviews.

Keywords: Block-Based Programming Languages, BBPL, Pro-
gramming, Literature Review
ACM Reference Format:
Ben Selwyn-Smith, Craig Anslow, andMichael Homer. 2022. Blocks,
Blocks, and More Blocks-Based Programming. In Proceedings of the
1st ACM SIGPLAN International Workshop on Programming Abstrac-
tions and Interactive Notations, Tools, and Environments (PAINT ’22),
December 05, 2022, Auckland, New Zealand. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3563836.3568726

1 Introduction
In recent years programming has become increasingly pop-
ular as the number of people enrolling in Computer Science
degrees has reached unprecedented levels [16]. One of the
reasons for such an increase is the increasing technological
ubiquity in everyday life, most importantly in the form of
smartphones, with a lot of children receiving or at the very
least being frequently exposed to a phone or tablet from
a young age. Another reason is the increasing demand for
graduates with computer science degrees, with a higher em-
ployment rate and above average salary potential [9], making
pursuing a computer science degree an attractive choice for
many prospective students. Similarly, there are concerns that

PAINT ’22, December 05, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 1st ACM SIGPLAN InternationalWorkshop on Programming
Abstractions and Interactive Notations, Tools, and Environments (PAINT ’22),
December 05, 2022, Auckland, New Zealand, https://doi.org/10.1145/3563836.
3568726.

jobs will be lost to automation as the potential of Artificial
Intelligence (AI) continues to increase, however research has
shown that computer science and engineering fields are one
of the least likely to be replaced within the next 15 years [4].

Therefore, it is important to use the best methods for teach-
ing computer science to new learners and research has shown
that an effective way is to use a Block Based Programming
Language (BBPL) [P16]. BBPLs are a type of visual program-
ming language that use block shaped objects to represent
programming concepts and operations. Users are then able
to join these blocks together, to create functioning programs.
Compared to traditional text based languages, BBPLs have
many features that make themmore suited to new users. The
key amongst this paradigm is the removal of syntax errors, as
blocks are always correct representations of existing syntax,
and BBPLs prevent users from combining blocks in incorrect
ways, either directly or through error messages, before a
program is run. Another key feature, is the exploration po-
tential of BBPLs. In textual languages when a novice wants
to attempt something new, it is unlikely they will be able to
guess how to construct the code to accomplish this, and it
is likely that they will have to consult an external resource
of some form. However, in BBPLs a user can instead place
blocks on the screen and try combining them in various
ways until something works, and while one could argue that
this is less efficient in the short term, it is of great use for
novice learners that might otherwise be too intimidated by
a programming language textbook and therefore leads to
greater gains in the long term. This is especially relevant
as an increasing number of younger users are being intro-
duced to programming through the adoption of mandatory
programming courses for children in school, starting from
as early as the elementary level [19]. BBPLs benefit younger
users by the ease at which they can create interactive mul-
timedia animations and games which are relevant to their
interests [15].
Like traditional text based languages, they are many BB-

PLs and new ones are frequently being created for much the
same reasons. Whether it be to try out a new potentially
beneficial feature, remove potentially harmful ones, or a new
design to cater to a different audience, there is seemingly
always room for more BBPLs. Therefore, to help future BB-
PLs, this literature review aims to gather information on a
large number of existing BBPLs, report their basic features

https://orcid.org/0000-0003-2031-3023
https://orcid.org/0000-0001-8064-6300
https://orcid.org/0000-0003-0280-6748
https://doi.org/10.1145/3563836.3568726
https://doi.org/10.1145/3563836.3568726
https://doi.org/10.1145/3563836.3568726


PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

and comparatively examine them. The hope is that this re-
view can act as a BBPL resource, confirm existing benefits
of BBPLs, and highlight areas where more can be done.

2 Method
To the best of the authors’ knowledge there exist no other lit-
erature reviews that cover the BBPLs for the same purpose as
this paper and this was partly the motivation behind creating
this literature review in the first place. However, one existing
literature review that does stand out is by Moreno-León and
Robles [12], which examines a single BBPL, Scratch, and re-
lated literature that investigate the potential for Scratch to be
used to teach skills other than coding, such as Mathematics,
English and so forth. However, we are interested to under-
stand how BBPLs have been used for teaching programming.

While few restrictions were placed upon BBPLs being ex-
amined by this literature review, the goal was still to try and
list only those that are currently relevant in some way. This
means BBPLs that were either created recently or ones that
still see regular use or have recent papers relating to them
despite being older are included in this review. A detailed
breakdown of the BBPLs chosen is included in section 3.1.
The process through which this literature review was

conducted derives from the study of several resources on the
creation of systematic literature reviews, most prominently:
"Guidelines for performing Systematic Literature Reviews in
Software Engineering" [7]. However, it must be noted that
this particular paper is just a literature review and not a
systematic literature review. The largest difference between
the two in this paper is in the selection process for the related
literature. Unlike a systematic literature review where the
aim is to find all relevant papers and perform exclusion and
inclusion analysis to find the most relevant, the method used
in this paper is to simply find and read as many relevant
papers as possible within the allotted time frame.
To find papers, various search strings including but not

limited to: block(s), based, block(s)-based, programming, cod-
ing, code, language and languages, were entered into Google
Scholar and online databases such as the ACM and IEEE
Xplore digital libraries. However, despite trying many dif-
ferent combinations of these words, including larger search
strings using AND and OR functionality, the number of rel-
evant results retrieved was always very low. Instead, the
method of choice for finding relevant papers was to start
with a well known paper and perform forwards and back-
wards snowballing from there. The choice of well known
paper to start from was an easy one: "Scratch: programming
for all" [P28] has over 1500 citations according to Google
Scholar. Papers that were part of the Blocks and Beyond
workshop [18] from the VL/HCC 2015 symposium were also
examined.

Like systematic literature reviews this paper started with
some research questions to answer as part of the process.

However, rather than reject papers that strayed too far from
these questions, the questions were instead expanded to
encompass found papers providing the papers were still
within the general theme. This ultimately led to the following
research questions:

• RQ1What block based languages exist?
• RQ2What textual programming languages do block
based languages support?

• RQ3How have block based languages been evaluated?
• RQ4 What educational settings have block based lan-
guages been used in?

• RQ5 What computer medium have block based lan-
guages been deployed on?

• RQ6 What kind of debugging features do block based
languages have?

• RQ7 What kind of influence have block based lan-
guages had on novice programmers?

3 Findings
This section firstly examines the findings from the papers
reviewed as part of this literature review in terms of en-
countered block-based programming languages and their
features. Visual examples of a selection of these can be seen
in Figure 1. Secondly, it provides answers to the research
questions previously listed. The full list of reviewed papers
can be found in Appendix A.

3.1 Block-based Programming Languages
3.1.1 Scratch. Scratch is possibly the most well known
of BBPLs, with close to 20 million registered users and hav-
ing recently entered the top 20 most used programming
languages according to the TIOBE index [17]. Scratch is a
BBPL that allows novices to create programs that primarily
manipulate two-dimensional images, referred to as sprites.
Existing blocks either contain common programming func-
tions such as loops, if statements and so on, or functions
that can be performed on sprites, such as move 10 pixels
down, or rotate 45 degrees clockwise. Scratch also supports
user created media content, including a built in sprite edi-
tor and the ability to import audio files. This combination
of features lead to Scratch being used for creating games
and other entertainment focused media programs. Scratch
was designed with the users in mind, with a strong focus on
exploratory programming, which makes it very accessible
even for younger users. Furthermore, to make things easier
for novices, invalid blocks are skipped when executing, al-
lowing invalid programs to still function. It also allows users
to edit blocks while running, further improving the novice’s
understanding of their created program. Scratch does not
support editing code through text and all programs exist
entirely of blocks.

For debugging, Scratch features the ability to run specific
groups of blocks, triggered by clicking on them. Scratch also



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

Figure 1. Some examples of BBPLs. Top Row: Left - Scratch, Middle - Blockly, Right - Tiled Grace. Bottom Row: Left - Stride,
Right - Pocket Code

allows the value of variables to be checked during execution
by use of a say block, which acts like a typical textual lan-
guage print statement, that displays the chosen variable on
screen. To help prevent errors and by extension the need for
debugging, Scratch uses different shaped corners for blocks
and holes, which denotes where certain blocks can be placed,
these are sorted by data type, with rectangles for strings,
rounded rectangles for numbers, and hexagonal blocks for
boolean values. Trying to place a rounded block into a hexag-
onal hole for example, is not possible. Finally, Scratch has
the ability to create entirely new blocks, which may contain
any number of labels and number, string or boolean holes.
This feature allows for some flexibility, but non data blocks
cannot be added to new blocks. For example, you cannot
create a new block that contains a while loop block.

3.1.2 Blockly. Blockly [P28] is very similar to Scratch,
with coloured jigsaw like blocks that can be combined to
make programs. Scratch focuses onmedia based story-telling,
while Blockly mainly exists as a block library, allowing de-
velopers to make use of its features in their own software.
Blockly also does not allow textual editing, but it does let
users export their created programs into a selection of text

languages, however this is strictly one-way, with no direct vi-
sual guide highlighting which block produces which section
of code, leaving the discovery of the relationship between the
two representations up to the user’s own experimentation.
When choosing to include Blockly as part of their software,
developers can also choose to restrict the possible output
languages and even choose to support a new one. Similarly,
new blocks can be added as needed.

Blockly does not use different shaped blocks like Scratch
does, but instead checks for invalid combinations when
blocks are combined. For example, when trying to create
a block that compares a number to a string, when placing
the second value block, the first will be ejected. In this way
novices are made aware that what they are trying to accom-
plish is not possible. However, there are limitations to this
method, as when a novice user wraps one of these values
in a variable, no error is raised. Like Scratch, Blockly does
permit users to selectively execute blocks, but unwanted
blocks must be disabled first, as all active on screen blocks
are executed at run time. Lastly, Blockly features the ability
to collapse blocks, where multi line blocks collapse into a
single line, and single line blocks are reduced to mostly text.
This feature helps save on screen space, which is always a



PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

concern with BBPLs, as blocks often require a lot more space
than their textual counterparts.

3.1.3 App Inventor. App Inventor [P35] is a BBPL de-
signed to allow novices to create programs for the Android
operating system. App Inventor is very similar to Scratch
and uses the Blockly library as it’s base. Compared with
the base Blockly library, App Inventor includes considerably
more blocks. A lot of these extra blocks are designed to in-
teract with the various elements of created Android Apps,
such as user interface (UI) element manipulation and phone
sensor interaction. In addition, App Inventor expands the
various categories from Blockly, with more features, such
as additional list command blocks and so forth. App Inven-
tor does not support text based editing, but some work has
been done to try and convert the source code from a pro-
gram to Java and Python, however neither has been officially
completed. Additionally, TAIL [P7] is an extension to App
Inventor that allows for the conversion of blocks to a block-
text hybrid, which produces blocks with code inside them.
This still does not allow for full conversion from block to
text, but is designed as a potential intermediary step.

As App Inventory uses the Blockly library, the debugging
features are largely the same. One difference is that App
Inventor does allow individual blocks to be executed at will.
However, as App Inventor programs are designed for An-
droid phones, programs cannot be tested without running
an Android emulator or having a connected Android device.

3.1.4 Alice. Alice [3] differs from other BBPLs in that it
allows users to create programs in a three-dimensional space.
However, it can be likened to Scratch, as blocks are used to
manipulate three-dimensional models within this space, just
as Scratch is used to manipulate two-dimensional sprites.
Alice also supports object-based programming and event
driven programming, but does not support textual editing,
except via one-way export in to Java code.
Alice is designed to prevent errors by forcing users to

choose block combinations from a list of acceptable blocks.
This prevents invalid combinations, reducing the need for
debugging. However, Alice does not feature any other de-
bugging methods and when an error does occur, displays a
generic error message suggesting the user submit an error
report.

3.1.5 Pencil Code. Pencil Code [P5] is similar to Scratch
in that it allows novices to make games and stories through
blocks. Unlike Scratch, Pencil Code allows users to work
using blocks or text and switch between the two at will.
This transition features an animation helping to show the
user how the two different modes match up. This is done
through the Droplet [P4] extension to Pencil Code that was
later built in. The text code used by Pencil Code can be
either CoffeeScript or JavaScript and as such blocks represent
features of these languages. Pencil Code also allows novices

to edit the block workspace through the use of a block based
HTML editor.
In Pencil Code, invalid blocks are not ignored and will

cause errors. Errors are produced at runtime with execu-
tion halting at the first invalid blocks, then instead of seeing
the expected program output, an error message is displayed.
Pencil Code does not allow subsets of current blocks to be
executed, as every on screen block must be part of the struc-
tured program, but blocks can be dragged outside of this area
to effectively disable them. While using Pencil Code users
can choose to switch between JavaScript and CoffeeScript at
will, but blocks are mapped directly to the textual language in
use and are not updated when switching, potentially putting
valid programs into an invalid state.

3.1.6 Tiled Grace. Tiled Grace [P13] is another BBPL that
allows novices to work with either blocks or text. Unlike
Pencil Code, Tiled Grace is built upon the Grace language,
a language developed specifically for novice learners [2].
Tiled Grace allows the user to switch between text or block
view as long as the program is valid, with an animation di-
rectly showing the mapping between each block and textual
equivalent. Compared to other BBPLs Tiled Grace features
more advanced blocks, including Objects, Classes and Inher-
itance. Using dialects, any number of additional blocks that
represent Grace code can be added.

The debugging features of Tiled Grace are also more exten-
sive compared with other BBPLs. For example, when trying
to combine invalid block combinations in Tiled Grace, an
error message is displayed when the action is prevented to
help users understand what went wrong. Also, as the user
changes blocks or text, Tiled Grace checks whether the re-
sulting program is valid and the UI includes a notification
showing whether it is or not. Then when the user hovers
over this UI notification, they can see detailed error messages
of each error currently in the program. Lastly, Tiled Grace
features the ability to highlight all instances of a variable or
method name in the program, as found in some programming
IDEs.

3.1.7 BrickLayer. BrickLayer [P8] is a BBPL designed to
allow novices to learn syntax through blocks, rather than
bypass the need for it like Scratch. To do this BrickLayer
uses a side by side view of text and block displays, with
matching sections from each being highlighted in the same
colours, allowing users to clearly understand the mapping
between both. Users can edit either section and see the rele-
vant changes that take effect in the other. The text language
used by BrickLayer is C. Compared with other BBPLs, Brick-
Layer helps novices learn the intricacies of control blocks
such as if statements, by including in the block list, blocks
for terminating and continuing these sections. Therefore to
form an if statement properly, requires the user to realise
the need for each individual component. Unfortunately, the
extent of BrickLayer functionality, especially in terms of



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

debugging could not be examined, as a publicly available
version of the software does not seem to exist. It should also
be noted that this BBPL is not the same as Bricklayer, despite
the very similar name.

3.1.8 Madeup. Madeup [P14] is a textual programming
language that includes a block based interface, which has
been designed to allow users to construct 3D objects through
programming and uses the Blockly library. These 3D objects
can also be printed using a 3D printer. Shapes are created in
a Logo style turtle graphics manner. Madeup supports direct
editing of text and blocks, however, Madeup is currently
still in development and the version examined in this review
had some issues with information disappearing between the
block and textual views.

Madeup uses an extension of Blockly for its block view and
therefore possesses the same debugging features. In addition
to these features it also has a real time error reporting out-
put window that is updated whenever the blocks or textual
code change. Madeup also introduces the ability to change
block statements into expressions, and this feature allows for
much greater flexibility when designing programs. However,
in the current version this allows for some unusual block
combinations, such as a print statement within another print
statement. It remains to be seen how this particular feature
will function in the release version of Madeup.

3.1.9 GP. GP [P22] is a BBPL that has been designed for
the purpose of eliminating the need for users of BBPLs to
transition into textual languages, by allowing all program-
ming tasks to be done using blocks. Part of this paradigm is
that GP itself is largely written in the GP language. GP as
a BBPL allows users to create interactive media based pro-
grams much like Scratch and other languages, and its blocks
are in fact extended from Scratch. GP has a unique feature
which allows the user to switch between block and textual
view using a slider, which ranges from a pure block view to a
pure textual view and covers all in-between states. However,
even in the pure text view, text elements are still functionally
blocks. Blocks can be edited using an experimental text edit
mode, however the authors of this paper experienced limited
success when trying to use this feature, with text edits often
producing no change in the related blocks.
By default, GP uses block ignore when executing, so in-

valid blocks do not prevent a program from functioning. GP
also features a developer mode, which when activated al-
lows users to view detailed error messages, move through
the function stack, and perform step by step evaluation of
the code. Like Scratch, it also features shaped data blocks,
preventing invalid combinations.

3.1.10 BlockPy. BlockPy [P3] is another BBPL that uses
the Blockly library. It features both text and block view, with
its text language being Python. One of the main bonuses of
BlockPy is the use of Python libraries, which allow for easy

manipulation of data and displaying of graphs, with one of
the stated goals being "Data Science as a First-Class Feature."
The web client includes the ability to import various data sets
from a predefined list, including Amazon E-book sales, data
on some of the world’s most wealthiest people, worldwide
earthquake data, to name just a few. However, the ability to
import user generated data sets does not seem to exist.
The debugging features of BlockPy are more advanced

than those found in the Blockly library, with controlled bi-
directional line by line execution, which is also present in
block mode although this is less useful as it corresponds
directly to textual view lines. Additionally, BlockPy displays
detailed error messages on execution, instead of ignoring
invalid blocks. These debugging options are also very strict,
to the extent that even low severity errors such as unused
variables, which often result in just a warning, preventing
execution entirely. Like Pencil Code execution is also stopped
upon encountering any error, limiting the error feedback per
execution to one error at most.

3.1.11 Calico Jigsaw. The Calico programming environ-
ment [P6] is designed around interoperability between differ-
ent textual programming languages. The Jigsaw extension
adds BBPL functionality to this environment. Block programs
can be exported to Python and other languages in the Calico
environment, but can not be imported, but Jigsaw does allow
for parts of blocks to be edited through textual input. Calico
shares libraries between all languages it contains, and with
Jigsaw this means that a selection of block modules can be
imported as required, providing a wide array of different
blocks.
Jigsaw debugging features variable speed execution, in-

cluding line by line execution, with breakpoints also sup-
ported. When executing, the value of blocks can be viewed
and the program will pause and display an error message
upon finding an invalid block.

3.1.12 BlockEditor. BlockEditor [P18] uses a block lan-
guage called Block and can convert between blocks and Java.
Editing can be performed in either mode. As BlockEditor uses
a specific block language rather than a block representation
of Java it is not a direct one to one mapping. However, the
similarities are such that switching between the two poses
no major issue. BlockEditor does not prevent users from
changing views from textual to blocks when the program
contains errors, as used by Tiled Grace, but instead prevents
any blocks from being shown. BlockEditor also makes use of
different shaped blocks to prevent some erroneous combina-
tions. Further information on debugging features could not
be explored as a publicly accessible version of BlockEditor
could not be found.

3.1.13 Greenfoot. Greenfoot [P27] is a programming en-
vironment which uses a Java-like language, Stride. Stride
uses a frame based system that uses blocks with editable text



PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

sections. Selection of new blocks also occurs via keyboard
entry. An animated transition is used to display the Java
equivalent of any created block programs, but does not allow
editing of the Java version. Stride removes many runtime er-
rors by showing error messages to the user when erroneous
input into any frame is detected. In addition, Stride features a
full debugger, with line by line execution, and variable speed
execution as well.

3.1.14 Pocket Code. Pocket Code [P30] is a mobile based
BBPL quite similar to Scratch, in that it focuses on creating
interactive games and other media based applications. Com-
pared with App Inventor it is designed to create and run
apps with no PC requirement. Compared to other BBPLs,
Pocket Code has a limited number of blocks available, with
even the almost universally present mathematics functions
being absent.
For debugging, with the smaller selection of available

blocks, Pocket Code actually becomes less prone to errors,
as many common ones are simply not possible, which re-
duces the need for complex debugging. When an error does
occur, Pocket Code ignores problem causing blocks. Pocket
Code also features the ability to display co-ordinate axis for
debugging the position of displayed items.

3.1.15 TouchDevelop. TouchDevelop [P31] is a BBPL de-
signed specifically for touch devices and works on PCs, and
mobile devices. The PC version also supports mouse and key-
board. TouchDevelop was originally defined as a text-based
programming language that utilised an enforced structure to
accommodate adding elements through touch events. How-
ever, since then a block view has been added and it can
now be categorised as a BBPL. When using TouchDevelop
users can decide to switch between three separate views,
which are designed for different levels of programming profi-
ciency, with the least experienced users being shown a block
language, and the most experienced users being shown some-
thing very close to a textual language.

TouchDevelop constantly checks changed blocks and code,
and shows in place error messages to make users aware of
any issues. The program can still be run even when errors
have been detected and doing so causes TouchDevelop to
further highlight found errors, so users cannot ignore them.
TouchDevelop is another language that features a line by line
debugger, and also includes traditional debugging options
such as step in, step out, step over, breakpoints, and even
a simplified stack visualisation. However, these advanced
options are only available in text mode.

3.2 Research Questions
3.2.1 RQ1 What Block Based Languages Exist? As can
be seen in the section 3.1, a large number of BBPLs currently
exist. After reviewing the papers it is clear that most existing
languages can be categorised into two main groups: introduc-
tory and transitional, which roughly encapsulate the basic

features of each. The few languages that do not fit, do not do
so because they posses only some of the features required to
elevate them into the transitional category, leading to the in-
clusion of a third category for these outliers: mixed. Table 1
lists all BBPLs reviewed in this paper and their categorisation
groups.
The first of these, the introductory group, consists of BB-

PLs that are primarily suited for introductory programming
courses ranging from elementary to high school levels. Lan-
guages in this group generally lack more advanced program-
ming features, but encourage new learners by easily allowing
them to create fun and interesting programs through the use
of blocks. One key aspect that is missing from BBPLs that
fall under this category is the ability to view and edit cre-
ations in both block and text views. Without this users are
eventually forced to move on to another environment to
further pursue programming and research has shown that
switching languages early on in the learning process can
be detrimental [14]. However, some of the user studies per-
formed in the reviewed papers show that new learners have
still benefited from using such languages before moving onto
text languages [P16].
The next category is the transitional group. Transitional

languages possess a few key features which make them best
suited for helping novice programmers at around the CS1
level transition into textual languages. Perhaps the most im-
portant of these features is the ability to switch between text
and block based representations of a program, and addition-
ally, the ability to edit either of these views and have the
changes then be reflected in the other view. Another impor-
tant feature is functional debugging. As novice programmers
advance in knowledge, inevitably their programs become
more complicated and thus a need for debugging features is
practically inevitable. This is further backed by the knowl-
edge that BBPLs often prevent many common errors such
as syntax, which can often lead to an sudden influx of prob-
lems when novices are suddenly forced to consider these
additional issues. Therefore, if novices start learning how to
debug programs while still using blocks, they will have an
easier time fixing errors in textual code. Lastly, transitional
BBPLs need to possess advanced programming features. Simi-
larly to debugging, as novice programmers progress they will
likely end up using more complicated programming features
such as recursion, multi-dimensional arrays, inheritance, etc.
However, if a BBPL does not support these features, then
novice learners are forced to move to a different language
to use them, even if they are not quite ready to do so. While
these three features are seen as being core features of transi-
tional BBPLs, some BBPLs can be in the transitional group
whilst only possessing some of these features in full. For
example, Stride can be considered a transitional language
despite not having full bidirectional text and block views,
because it does feature advanced programming concepts
and has full debugging capabilities. Conversely, Pencil Code



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

Table 1. BBPLs examined in this review.

Block Language Text Language Platform Text Editor Language Group
Scratch None PC No Introductory

App Inventor None PC, Android No Introductory
Pocket Code None Mobile No Introductory

Blockly JS, Python, PHP, Lua, Dart PC, Mobile Unidirectional Introductory
Calico Jigsaw Python PC Unidirectional Introductory

Alice Java PC Unidirectional Introductory
Pencil Code CoffeeScript, JavaScript PC Bidirectional Introductory

GP LISP-like PC Bidirectional Transitional
Madeup MadeUp PC Bidirectional Transitional
BlockPy Python PC Bidirectional Transitional

BlockEditor Java PC Bidirectional Transitional
BrickLayer C PC Bidirectional Transitional
Tiled Grace Grace PC Bidirectional Transitional

Stride Java PC Unidirectional Mixed
TouchDevelop JavaScript PC, Mobile Bidirectional Mixed

has been classified as a introductory language even though
is has editable text and block views, because it does not
possess advanced features and does not possess advanced
debugging capabilities. Ultimately, the categorisation is not
perfect, and further research could be done to truly evaluate
this categorisation using a properly defined metric. However,
the overarching theme is that these languages help novice
learners move from a block based language to a point where
moving onto a textual language is possible, with at most only
a few potential difficulties.

3.2.2 RQ2 What Textual Programming Languages Do
Block Based Languages Support? BBPLs support a wide
range of textual languages, though the means of support
varies. Amongst the papers reviewed as part of this paper,
the full list of supported languages is as follows: Java, Python,
C, Grace, MadeUp, JavaScript, CoffeeScript, PHP, LUA, Dart,
and Stride.

Out of these the most commonly occurring text language
was Java and with Java having been the most common intro-
ductory computer science language for a number of years
this is to be expected. Recent research has shown that Python
has become the most common introductory language in US
universities [5] and out of the BBPLs reviewed in this paper,
Blockly, with export only, and BlockPy, with bidirectional,
make use of Python. Another observation is the use of the
Grace language, which is specifically designed for new learn-
ers, and is only used by a single BBPL. Few of the papers
provide any reasoning behind why a specific text language
was chosen, and questions remain unanswered as to the po-
tential impact this choice of language could have on novice
programmers. A graph showing the number of each BBPL
using each textual programming language can be seen in
Figure 2.

Table 2. Papers grouped by evaluation method.

Method Papers
Survey P8,16,26
Survey and Analysis P2,10-11,13,20,24,27,33
CS1 Course P35
CS1 Course and Analysis P21,29
Analysis P5,17,18,24,34
Observation P9,12,19,23,31,32

3.2.3 RQ3 How Have Block Based Languages Been
Evaluated? BBPLs have been evaluated in a number of dif-
ferent ways. A summary of the evaluation methods, can be
found in Table 2, while a more detailed overview of each
reviewed paper with a user study can be found inAppendix
B. While typical user studies consist of a survey, observation
and analysis, many of the papers in this review only detail
certain aspects of their user studies. The reported aspects
are grouped using the following categories:
Survey includes all types of questionnaires and other

forms of evaluation which involve questions being asked of
the participants. This could be written, verbal or any other
means of communication and includes all such interactions
whether they be before, during or after any user studies.
This also includes different types of survey methods, for
example Likert scales [11], the Computer Attitude Scale [13]
and Questionnaire Programming Knowledge [8].

CS1 Course refers to any user studies that were done as
part of a first level undergraduate course. User studies that
take place as part of a CS1 course can take place during part
of, or all of the course, with evaluation methods consisting
of quizzes and exams.



PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

Figure 2. A graph showing the number of BBPLs that use each textual programming language. With the x-axis representing
textual languages, and the key showing BBPLs.

Analysis is a broader category as it involves all evaluation
methods that draw statistical conclusions from the data. In
the examined papers this includes: evaluating how partici-
pants interacted with the software through a log or recording
of performed actions as well as evaluating the outcome of
the tasks performed. These tasks could be a specific user
study task, or a task that took place as part of a CS1 course,
for example.

Observation refers to papers that do not report any con-
crete results. While typical user studies contain an observa-
tion phase, this section is used to categorise papers that may
not have done a real user study, but instead where data was
gathered in a casual manner with no formal method being
employed. Therefore, papers whose evaluation method falls
into this category are unlikely to draw concrete conclusions
and more likely to point towards areas with possible further
research.

3.2.4 RQ4 What Educational Settings Have Block
Based Languages Been Used in? User studies for BBPLs
have been performed with participants ranging from middle
school to university level. The exact breakdown from the
researched papers with user studies can be seen in Table 3.
Including programming into elementary prospectuses is a
recent change, and this is reflected in the user studies per-
formed by the research papers, with no user studies including
elementary students. However, Cheung et al. [P8] talk about
summer workshops involving elementary students using
Scratch, but provide no in-depth information or results from
these events, leaving the possibility for further research to
conduct user studies involving elementary students. Table

3 also shows the total number of participants for each cat-
egory, with University students being the clear winner at
1,114. Although there is a large disparity between the num-
ber of participants from each group, this is likely partly a
reflection of the relative difficulty with which each group
can be enlisted in user studies, with Universities simply hav-
ing more students available in one place, and less hurdles to
overcome for participation.

3.2.5 RQ5What Computer Medium have Block Based
Languages Been Deployed On? The majority of BBPLs
are designed to run in web browsers on PCs. This allows for a
fair amount of platform independence and removes the need
for downloading or installing any software, other than a
web browser. This combination of factors removes potential
hurdles and therefore makes a lot of sense for introducing
BBPLs to new users. The results from the reviewed papers
also show that a few BBPLs are designed for smartphones
and tablets. While it can be more difficult to design BBPLs for
such devices, due to smaller screens and different interaction
methods, as mentioned previously the ubiquitous nature of
mobile devices means that young people are more likely to
have access to them, and therefore more likely to engage
with BBPLs in their spare time.

Of the BBPLs reviewed in this paper, Pocket Code is the
only one that is solely designed for mobile devices, however
the features it possesses are quite limited even compared
to other introductory BBPLs, limiting the experience that
can be gained by novices using it. Another BBPL available
on mobile devices is TouchDevelop, and there is a related
comprehensive user study paper [10], testing its capabilities
on mobile devices. However, this user study focuses more



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

Table 3. Papers grouped by education setting of user study.

Education Level Papers Participants Highest
Middle School P5,10,11,12,26,27,32,34 405 P32 (150)
High School P2,4,8,19,20,24,31,33 423 P2 (120)
University P9,13,16,17,18,21,23,29,35 1157 P21 (450)

on the non block based aspects of TouchDevelop, and was
therefore not included in the reviewed papers. Lastly, Blockly
is capable of being used on mobile devices, but requires use
of a development tool to build and deploy apps that are
made. This is similar to App Inventor, which is designed to
deploy apps on Android devices, but the process for App
Inventor seems to be more streamlined. This information
points to an obvious need for more BBPLs on mobile devices
and more related research, especially for BBPLs categorised
under the introductory group intended for younger learners.
Each BBPL examined in this review and the platforms it has
been deployed on, is shown in Table 1.

3.2.6 RQ6What kind of Debugging Features Do Block
Based Languages Have? Of all the user studies featured in
the reviewed papers of this literature review, debugging is
one of the least talked about aspects of BBPLs and very few
research papers even mention it, with one notable exception
being a user study conducted with Tiled Grace [P13], in the
paper Homer and Noble showed clear evidence that partici-
pants of the user study found the debugging features to be
beneficial, with the user study survey containing specific
questions pertaining to them.

As debugging is a vital part of software creation, introduc-
ing debugging as part of introductory programming seems
like a worthwhile venture and furthermore, the level of de-
bugging capability is one indicator of whether a BBPL can
be categorised as an introductory or transitional language.
However, just because few of the user studies examined de-
bugging, does not mean that the other BBPLs do not have
debugging features. Many of them do, and section 2 con-
tained information about the debugging features found from
using all of the BBPLs that could be used, with the exceptions
BrickLayer and BlockEditor having no publicly accessible
version.

From the BBPLs examined in this review, a number of
interesting debugging features were found. Chief amongst
these is found in BlockPy, which has the ability to perform
line-by-line execution in both forwards and backwards di-
rections. The ability to debug backwards is a feature that is
very rarely found in textual programming languages and as
such really stands out. Another noteworthy feature is found
in Tiled Grace and TouchDevelop, shown in Figure 3, which
both show errors to the user in the place where it occurs as
opposed to elsewhere on screen, which really helps novices
to understand how their programs have gone wrong and
where they need to apply fixes. In examining the debugging

features of BBPLs it has also come to our attention that in-
troductory BBPLs generally design their language to ignore
errors and simply carry on executing. While this makes some
sense, as novices may be unable to understand some error
messages, it also can potentially prevent users from realising
that their constructed program does not function as they
intended, which is often a missed opportunity for further
learning. Therefore, research that examines how exactly this
type of error reporting impacts novices could be of use to
the future BBPLs.

3.2.7 RQ7 What Kind of Influence Have Block Based
Languages Had on Novice Programmers? The results
gathered as part of this paper clearly show that BBPLs are
beneficial to people trying to learn programming. In partic-
ular, Malan and Leitner [P16] showed that 76% of partici-
pants in a Scratch user study felt that Scratch was a positive
influence. While Papadakis et al. [P24] performed a user
study with App Inventor, Scratch and Pascal, which showed
through a series of tests related to a course, that participants
using App Inventor and Scratch, showed greater improve-
ments compared to the Pascal group, with the App Inventor
group additionally performing better than the Scratch group.
Price et al. [P27] also performed a user study comparing
Stride and Java, and found that while levels of satisfaction
and frustration was the same for both groups, participants
using Stride completed tasks faster, and spent less time with
erroneous code. Similarly, Price and Barnes [P26] performed
a user study using a modified version of Tiled Grace, where
participants were split into two groups, one restricted to
the textual view and the other the block view. The results
showed that participants using the block view, successfully
completed more of the set tasks than the textual view group.
Another interesting finding from Rizvi et al. [P29] was that
students suspected of potentially having problems with CS1
courses, fared much better after taking an introductory CS0
course using BBPLs, and were more likely to subsequently
take additional CS courses. Lastly, Wilson and Moffat [P34]
showed that among the benefits of BBPLs, was that they can
help prevent negative association with programming, which
is especially important for younger learners.

In terms of BBPL groups, introductory BBPLs allow younger
learners to learn by performing tasks that are relevant to
their interests, such as games and animations, whilst also be-
ing easy to get into via exploratory programming. Whereas
Transitional BBPLs have also been shown to be beneficial
to older learners, as they allow for users to go at their own



PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

Figure 3. Multiple in-place error messages. Left: Tiled Grace, Right: TouchDevelop

pace, switching from blocks to text as necessary, in particu-
lar, Homer and Noble [P13] performed a user study in which
participants found the two view system to be enjoyable. User
studies of transitional BBPLs also showed that users move
away from block views as they improve, eventually leading
to almost exclusive usage of textual view as they develop
their skills, of these Bau et al. [P5] showed participants reach
95% text view usage over a four session user study, while
Matsuzawa et al. [P18] found that the rate of block usage in
their user study dropped to around 10% over the course of a
15 week study.

There were also some user studies that highlighted prob-
lem areas, for example, Mishra et al. [P21] showed that while
Scratch was useful for novice learners, in that it improved
their performance with subsequent C++ questions, it did
not sufficiently improve performance in C++ debugging
questions. Meerbaum-Salant et al. [P19] also highlight some
bad habits that novices can learn from Scratch, including
a bottom-up programming approach in which participants
would drag all seemingly relevant blocks for solving a task
onto the canvas, and then try to guess how they best fit
together, rather than thinking about the task in terms of al-
gorithms or software design. Participants also were found to
use extremely fine-grained programming, where they would
decompose tasks into needlessly small subtasks. Weintrop
and Wilensky [P33] identified a number of potential prob-
lems of BBPLs, including the feeling that BBPLs were not
real languages, being unable to express all concepts, and
large programs being hard to manage. These points are es-
pecially interesting as the paper’s user study was done with
Snap! [6], an extension for Scratch which adds greater func-
tionality, as Snap! is designed to better suit the needs of
more advanced learners, yet participants still found it to be
too limiting. Lastly, some papers found that Scratch did not
provide novices with sufficient understanding of certain con-
cepts, including initialisation, concurrency, variables, loops
and booleans, [P20, P11] despite the user study participants
having little trouble creating programs.

4 Conclusions
A number of interesting points have arisen as part of this
literature review. Firstly, the categorisation potential of most
BBPLs into the Introductory and Transitional groups. Intro-
ductory BBPLs focus on enabling younger users to create
fun games and animations via blocks only. Transitional BB-
PLs posses block and text views that allow users to see how
blocks transition into actual code, as well as more advanced
debugging and programming features that ultimately help
users move on from blocks to textual coding. It was also
observed that some languages can be difficult to categorise
as they may feature only a subset of the transitional lan-
guage criteria, with TouchDevelop and Stride being notable
examples that warrant the inclusion of an additional Mixed
category. Even with these two outliers We believe that this
categorisation has merit, as it can be used to guide the selec-
tion the ideal language for a given age group.
The textual language used by those BBPLs that have a

textual view is also worthy of investigation. There exists
a wide selection of text languages in use by BBPLs. From
the BBPLs reviewed in this paper, Java and Python are the
most popular choices with three and two respective uses,
see Figure 2. However little information is given as to why
a specific language was chosen and questions remain as to
whether BBPLs are possibly better for certain languages or
whether they need to be adjusted to help transition into cer-
tain languages. Additionally, whether languages that are the
most popular currently, such as Python or Java, or languages
specifically designed for new learners, such as Grace, are
better choices for BBPLs to use.

Examining the environments that BBPLs have been evalu-
ated in shows that while introductory undergraduate courses,
high schools, and middle schools, have had a number of user
studies conducted in them, elementary schools have not.
With recent changes to school curriculums around the world
bringing the age at which students start to learn program-
ming lower, investigating how younger learners may benefit
from BBPLs is critical, and Bell et al. [1] highlight the need



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

for new computer science courses aimed at younger learners
to be carefully designed to ensure that learners are aware
of potential career paths and a sufficient range of topics are
available to match the abilities of students. In terms of BBPLs,
this can be viewed as ensuring that students know why they
are learning programming, while they learn how to program.
Additionally, ensuring that students are using a BBPL that
matches their age and ability range is paramount, hence the
need to further evaluate this topic.
As far as platform goes, the vast majority of BBPLs are

designed for deployment in PC web browsers. Viewing such
web pages on a mobile device is possible, but may lead to
difficulties due to the smaller screen space and differing input
methods. Providing a dedicated mobile application or mobile
friendly web versionwould lessen the severity of these issues,
which is especially important when dealing with younger
learners who may be both less tolerant of such problems,
and less able to overcome them.

A Reviewed Papers
References
[P1] Saksham Aggarwal, David Anthony Bau, and David

Bau. “A blocks-based editor for HTML code”. In:
Blocks and Beyond Workshop (Blocks and Beyond),
2015 IEEE. IEEE. 2015, pp. 83–85.

[P2] Michal Armoni, Orni Meerbaum-Salant, and
Mordechai Ben-Ari. “From Scratch to “real” program-
ming”. In:ACMTransactions on Computing Education
(TOCE) 14.4 (2015), p. 25.

[P3] Austin Cory Bart et al. “Position paper: From inter-
est to usefulness with BlockPy, a block-based, educa-
tional environment”. In: Blocks and BeyondWorkshop
(Blocks and Beyond), 2015 IEEE. IEEE. 2015, pp. 87–89.

[P4] David Bau. “Droplet, a blocks-based editor for text
code”. In: Journal of Computing Sciences in Colleges
30.6 (2015), pp. 138–144.

[P5] David Bau et al. “Pencil code: block code for a text
world”. In: Proceedings of the 14th International Con-
ference on Interaction Design and Children. ACM. 2015,
pp. 445–448.

[P6] Douglas Blank et al. “Calico: A multi-programming-
language,multi-context framework designed for com-
puter science education”. In: Proceedings of the 43rd
ACM technical symposium on Computer Science Edu-
cation. ACM. 2012, pp. 63–68.

[P7] Karishma Chadha and Franklyn A Turbak. “Improv-
ing App Inventor Usability via Conversion between
Blocks and Text.” In: J. Vis. Lang. Comput. 25.6 (2014),
pp. 1042–1043.

[P8] Joey CY Cheung et al. “Filling the gap in program-
ming instruction: a text-enhanced graphical program-
ming environment for junior high students”. In:ACM
SIGCSE Bulletin. Vol. 41. 1. ACM. 2009, pp. 276–280.

[P9] Matthew Conway et al. “Alice: lessons learned from
building a 3D system for novices”. In: Proceedings of
the SIGCHI conference on Human Factors in Comput-
ing Systems. ACM. 2000, pp. 486–493.

[P10] Hilary Dwyer et al. “Fourth Grade Students Reading
Block-Based Programs: Predictions, Visual Cues, and
Affordances”. In: Proceedings of the eleventh annual
International Conference on International Computing
Education Research. ACM. 2015, pp. 111–119.

[P11] Shuchi Grover and Satabdi Basu. “Measuring stu-
dent learning in introductory block-based program-
ming: Examining misconceptions of loops, variables,
and boolean logic”. In: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education. ACM. 2017, pp. 267–272.

[P12] Shuchi Grover and Roy Pea. “Using a discourse- in-
tensive pedagogy and Android’s App Inventor for in-
troducing computational concepts to middle school
students”. In: Proceeding of the 44th ACM techni-
cal symposium on Computer science education. ACM.
2013, pp. 723–728.

[P13] Michael Homer and James Noble. “Combining tiled
and textual views of code”. In: Software Visualization
(VISSOFT), 2014 Second IEEE Working Conference on.
IEEE. 2014, pp. 1–10.

[P14] Chris Johnson and Peter Bui. “Blocks in, blocks out:
A language for 3D models”. In: Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE. IEEE. 2015,
pp. 77–82.

[P15] Michael Kölling, Neil CC Brown, and Amjad Al-
tadmri. “Frame-based editing: Easing the transition
from blocks to text-based programming”. In: Pro-
ceedings of the Workshop in Primary and Secondary
Computing Education. ACM. 2015, pp. 29–38.

[P16] David J Malan and Henry H Leitner. “Scratch for bud-
ding computer scientists”. In: ACM SIGCSE Bulletin
39.1 (2007), pp. 223–227.

[P17] Yoshiaki Matsuzawa, Yoshiki Tanaka, and Sanshiro
Sakai. “Measuring an Impact of Block-Based Lan-
guage in Introductory Programming”. In: Interna-
tional Conference on Stakeholders and Information
Technology in Education. Springer. 2016, pp. 16–25.

[P18] Yoshiaki Matsuzawa et al. “Language migration in
non-CS introductory programming through mutual
language translation environment”. In: Proceedings
of the 46th ACM Technical Symposium on Computer
Science Education. ACM. 2015, pp. 185–190.

[P19] Orni Meerbaum-Salant, Michal Armoni, and
Mordechai Ben-Ari. “Habits of programming in
Scratch”. In: Proceedings of the 16th Annual Joint Con-
ference on Innovation and Technology in Computer
Science Education. ACM. 2011, pp. 168–172.



PAINT ’22, December 05, 2022, Auckland, New Zealand Ben Selwyn-Smith, Craig Anslow, and Michael Homer

[P20] Orni Meerbaum-Salant, Michal Armoni, and
Mordechai Ben-Ari. “Learning computer science con-
cepts with Scratch”. In: Computer Science Education
23.3 (2013), pp. 239–264.

[P21] Shitanshu Mishra et al. “Effect of a 2-week Scratch
intervention in CS1 on learners with varying prior
knowledge”. In: Proceedings of the 2014 conference on
Innovation & technology in computer science educa-
tion. ACM. 2014, pp. 45–50.

[P22] Jens Monig, Yoshiki Ohshima, and John Maloney.
“Blocks at your fingertips: Blurring the line between
blocks and text in GP”. In: Blocks and Beyond Work-
shop (Blocks and Beyond), 2015 IEEE. IEEE. 2015, pp. 51–
53.

[P23] RalphMorelli et al. “Can Android App Inventor bring
computational thinking to k-12”. In: Proc. 42nd ACM
technical symposium on Computer science education
(SIGCSE’11). 2011, pp. 1–6.

[P24] Stamatios Papadakis et al. “Using Scratch and App
Inventor for teaching introductory programming in
secondary education. A case study”. In: International
Journal of Technology Enhanced Learning 8.3-4 (2016),
pp. 217–233.

[P25] Shaileen Crawford Pokress and José Juan Dominguez
Veiga. “MIT App Inventor: Enabling personal mobile
computing”. In: arXiv preprint arXiv:1310.2830 (2013).

[P26] Thomas W Price and Tiffany Barnes. “Comparing
textual and block interfaces in a novice programming
environment”. In: Proceedings of the eleventh annual
International Conference on International Computing
Education Research. ACM. 2015, pp. 91–99.

[P27] Thomas W Price et al. “Evaluation of a Frame-based
Programming Editor.” In: ICER. 2016, pp. 33–42.

[P28] Mitchel Resnick et al. “Scratch: programming for all”.
In: Communications of the ACM 52.11 (2009), pp. 60–
67.

[P29] Mona Rizvi et al. “A CS0 course using scratch”. In:
Journal of Computing Sciences in Colleges 26.3 (2011),
pp. 19–27.

[P30] Wolfgang Slany. “Tinkering with Pocket Code, a
Scratch-like programming app for your smartphone”.
In: Proc. of Constructionism (2014).

[P31] Nikolai Tillmann et al. “TouchDevelop: program-
ming cloud-connected mobile devices via
touchscreen”. In: Proceedings of the 10th SIGPLAN
symposium on New ideas, New Paradigms, and Re-
flections on Programming and Software. ACM. 2011,
pp. 49–60.

[P32] Barbara Walters and Vicki Jones. “Middle school ex-
perience with visual programming environments”.
In: Blocks and Beyond Workshop (Blocks and Beyond),
2015 IEEE. IEEE. 2015, pp. 133–137.

[P33] David Weintrop and Uri Wilensky. “To block or not
to block, that is the question: students’ perceptions

of blocks-based programming”. In: Proceedings of the
14th International Conference on Interaction Design
and Children. ACM. 2015, pp. 199–208.

[P34] Amanda Wilson and David C Moffat. “Evaluating
Scratch to introduce younger schoolchildren to pro-
gramming”. In: Proceedings of the 22nd Annual Psy-
chology of Programming Interest Group (Universidad
Carlos III de Madrid, Leganés, Spain (2010).

[P35] David Wolber. “App Inventor and real-world motiva-
tion”. In: Proceedings of the 42nd ACM technical sym-
posium on Computer science education. ACM. 2011,
pp. 601–606.

B Reviewed Papers with User Studies

Table 4. Information from each reviewed paper with a user
study component.

Paper Language Education # Part. Eval. Method
P2 Scratch High School 120 Survey,Analysis

P4 Droplet
(PencilCode) High School 14 Survey

P5 App Inventor High School 8 Analysis

P8 BrickLayer Middle School
High School 24 Survey

P9 Alice University 100 Observation
P10 Scratch Middle School 26 Survey, Analysis
P11 Scratch Middle School 100 Survey,Analysis
P12 App Inventor Middle School 7 Observation
P13 Tiled Grace University 33 Survey, Analysis
P16 Scratch University 25 Survey
P17 BlockEditor University 100 CS1
P18 BlockEditor University 404 Analysis
P19 Scratch Middle School 46 Observation
P20 Scratch High School 56 Survey,Analysis
P21 Scratch University 450 CS1
P23 App Inventor University 2 Observation
P24 App Inventor

Scratch High School 87 Survey, Analysis
P27 Greenfoot Middle School 24 Survey,Analysis
P29 Scratch University 43 CS1,Analysis
P31 Pocket Code High School 24 Observation
P32 App Inventor Middle School 150 Observation
P33 Snap! High School 90 Survey,Analysis
P34 Scratch Middle School 21 Analysis
P35 App Inventor University - Observation

References
[1] Tim Bell, Peter Andreae, and Lynn Lambert. “Com-

puter science in New Zealand high schools”. In: Pro-
ceedings of the Twelfth Australasian Conference on
Computing Education-Volume 103. Australian Com-
puter Society, Inc. 2010, pp. 15–22.

[2] Andrew P Black et al. “Grace: the absence of (inessen-
tial) difficulty”. In: Proceedings of the ACM interna-
tional symposium on New ideas, new paradigms, and
reflections on programming and software. ACM. 2012,
pp. 85–98.



Blocks, Blocks, and More Blocks-Based Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

[3] Wanda P Dann, Stephen Cooper, and Randy Pausch.
Learning to Program with Alice (w/CD ROM). Prentice
Hall Press, 2011.

[4] Carl Benedikt Frey and Michael A Osborne. “The
future of employment: how susceptible are jobs to
computerisation?” In: Technological Forecasting and
Social Change 114 (2017), pp. 254–280.

[5] Philip Guo. Python is now the most popular introduc-
tory teaching language at top US universities. https:
//cacm.acm.org/blogs/blog-cacm/176450-python-
is-now-the-most-popular-introductory-teaching-
language-at-top-u-s-universities/fulltext. Accessed:
2017-07-3.

[6] Brian Harvey et al. “Snap!(build your own blocks)”.
In: Proceedings of the 45th ACM technical symposium
on Computer science education. ACM. 2014, pp. 749–
749.

[7] Staffs Keele et al. “Guidelines for performing system-
atic literature reviews in software engineering”. In:
Technical report, Ver. 2.3 EBSE Technical Report. EBSE.
sn, 2007.

[8] Sebastian Kleinschmager and Stefan Hanenberg.
“How to rate programming skills in programming ex-
periments?: a preliminary, exploratory, study based
on university marks, pretests, and self-estimation”.
In: Proceedings of the 3rd ACM SIGPLAN workshop on
Evaluation and usability of programming languages
and tools. ACM. 2011, pp. 15–24.

[9] US Bureau of Labor Statistics. Occupational Outlook
Handbook - Computer and Information Research Sci-
entists. https://www.bls.gov/ooh/computer-and-inf
ormation-technology/computer-and-information-
research-scientists.htm. Accessed: 2017-07-02.

[10] Sihan Li, Tao Xie, and Nikolai Tillmann. “A com-
prehensive field study of end-user programming on

mobile devices”. In: Visual languages and human-
centric computing (vl/hcc), 2013 ieee symposium on.
IEEE. 2013, pp. 43–50.

[11] Rensis Likert. “A technique for the measurement of
attitudes.” In: Archives of psychology (1932).

[12] Jesús Moreno-León and Gregorio Robles. “Code
to learn with Scratch? A systematic literature re-
view”. In: Global Engineering Education Conference
(EDUCON), 2016. IEEE. 2016, pp. 150–156.

[13] Gary S Nickell and John N Pinto. “The computer
attitude scale”. In: Computers in human behavior 2.4
(1986), pp. 301–306.

[14] Kris Powers, Stacey Ecott, and Leanne M Hirshfield.
“Through the looking glass: teaching CS0 with Alice”.
In: ACM SIGCSE Bulletin 39.1 (2007), pp. 213–217.

[15] Mitchel Resnick. “Point of view: Reviving papert’s
dream”. In: Educational Technology 52.4 (2012), p. 42.

[16] Taylor Soper. Analysis: The exploding demand for
computer science education, and why America needs to
keep up. https://www.geekwire.com/2014/analysis-e
xamining-computer-science-education-explosion/.
Accessed: 2017-07-01.

[17] TIOBE Index | Top 20 Programming Languages July
2017. https://www.tiobe.com/tiobe-index/. Accessed:
2017-07-05. 2017.

[18] Franklyn Turbak et al. “2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond)”. In: Atlanta 2015
(2015).

[19] Department for Education UK Government. National
curriculum in England: computing programmes of
study. https://www.gov.uk/government/publica
tions/national-curriculum-in-england-computing-
programmes - of - study /national - curriculum- in -
england - computing - programmes - of - study. Ac-
cessed: 2017-07-10.

Received 2022-09-01; accepted 2022-10-02

https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/
https://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/
https://www.tiobe.com/tiobe-index/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

	Abstract
	1 Introduction
	2 Method
	3 Findings
	3.1 Block-based Programming Languages
	3.2 Research Questions

	4 Conclusions
	A Reviewed Papers
	B Reviewed Papers with User Studies

