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Abstract

Dala is an “as simple as possible” concurrent object-oriented
language designed to avoid data races. Dala objects come
in three safe flavours: immutable, isolated, and local, plus
a fourth unsafe flavour. The objects are organised into an
hierarchy so that e.g. immutable objects can be accessed from
anywhere but never mutated, while thread local objects can
be mutated but cannot be accessed outside their containing
thread.

Dala’s flavours are intended to be enforced at runtime:
unfortunately it is not clear when and how best to undertake
that enforcement.

In this paper we present six axes of variation for the dy-
namic enforcement of Dala flavours: when each safe flavour
is enforced, how isolated objects are moved, how new ob-
jects are assigned a flavour, and whether objects’ flavours
can change over time. These six axes embody 2,880 different
combinations: we present five exemplary designs and dis-
cuss how they are placed on those those axes. Programming
language designers can use our analysis to inform the design
of dynamic capabilities in their languages, while the analy-
sis may also help programmers understand what language
designers have done.

CCS Concepts: » Software and its engineering — Dy-
namic analysis; Data types and structures; Error handling and
recovery; Software design tradeoffs.
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1 Introduction

Fernandez-Reyes et al. proposed Dala, a capability-based lan-
guage design aimed at avoiding data races using dynamic
enforcement of certain object access invariants [8]. These
capabilities ensure safe object access and data-race freedom
— meaning access that complies with capability constraints
and avoids simultaneous access to shared data by concur-
rent threads. The Dala language [8] sets out a specific set
of run-time enforcement mechanisms, different for each of
its capabilities, and both a formal model and a prototype
implementation. That prototype implementation already dif-
fered from the formal model in some respects for practical
reasons, and the different approaches used for each capa-
bility also highlight the scope of variability possible. We
set out to investigate the design space of gradual capabil-
ity enforcement more broadly when applied in a practical
system, and to understand the trade-offs that can be made
which enable or prevent certain kinds of programs, or certain
styles of programming. Our exploration has broader appli-
cations than just Dala, investigating a matrix of possible
approaches to any kind of gradual enforcement, including
typing, ownership, and information flow control. To assist
with these explorations, we have implemented a prototype
system supporting six axes of variation, enabling a wide
range of design combinations. As the original Dala paper
presents the concrete language design using a variation of
Grace [3], but the “Daddala” implementation presented in
its extended version [9] is not available, we have extended
an existing implementation [13] of the Grace language to
most closely align with the original presentation.

Many type systems or correctness properties can be im-
plemented through static checkers, dynamic detection, or
gradations of “gradual” approaches in between — but exactly
how the dynamic enforcement happens for different proper-
ties has wider implications. There are trade-offs made in any
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design: every approach has some costs — conceptual, perfor-
mance, syntactic — but who bears them? Which parts of the
program bear them? Different models will facilitate differ-
ent kinds of program, and different kinds of programming;
different properties may suit different styles of enforcement
within these models. We aim to extend exploration of the
design space beyond typical approaches in the literature, and
to reify abstract concepts in a working system for experi-
mentation with real programs.
The contributions of this paper are:

e Six axes of variation for gradual capability enforce-
ment, along with an illustration of how different selec-
tions along these axes impact the structure and behav-
ior of programs.

e A prototype implementation capable of executing and
enforcing variations on all of these axes.

The next section briefly describes the baseline Dala design
that inspired the present exploration. Section 3 describes
each axis of variation we explore, showing through code
examples the practical implications of different points on
each axis. Section 4 discusses the implementation of our
system supporting all of the models. Section 5 considers
these more holistically, showing coherent sets of choices
resulting in different language semantics or ergonomics, and
discusses other issues uncovered during this exploration.
Section 6 positions our approach amongst related work, and
Section 7 concludes.

2 Baseline Dala

The baseline Dala design given by Fernandez-Reyes et al. [8]
includes four flavours, which can be assigned to an object at
creation time.

All reachable code and data will be safe once within an
object of any of the three “safe” flavours:

e imm - The object is immutable, can be aliased freely,
and can be accessed on any thread.

e iso - The object can have only one reference at a time,
but can be moved freely between threads.

e local - The object can be aliased, but can only be ac-
cessed on the thread it was created on.

The fourth flavour, unsafe, is the default:

¢ unsafe — This flavour imposes no restrictions. It is
the default, meaning that unannotated programs will
continue to work as-is.

The safe flavours impose restrictions on which other flavours
of object can be referenced and how the objects can be used.
Safe annotations can gradually be added to an existing pro-
gram to improve safety in that area. The intention is that
the unsafe part of the program can be gradually reduced in
a “bottom-up” way by converting the deepest unsafe objects
to safe ones.
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Dala’s flavours are similar to “capabilities” in the litera-
ture [5, 10], and previous work has formalised their treatment
using Dafny [19]. The capabilities have two parallel effects.
First, they impose restrictions on the use of an object, as
described above: where and when it may be dereferenced,
mutated, or bound to a name. Dereferencing gives access to
the internal state of an object. Second, they impose a hierar-
chy on the object graph — that is, they restrict which flavours
of object can refer to which other flavours. The hierarchical
properties are quite simple, and not the focus of our work
here:

e An imm object can only hold references to other imm
objects, and so must be deeply immutable.
e An iso object can hold references to imm or iso objects,
but not to local or unsafe objects.
e A local object can hold references to iso or imm ob-
jects, but not to unsafe objects.
e An unsafe object can hold reference to any other object
and has no safety properties of its own.
These hierarchical limitations are distinct from the usage
restrictions on the objects themselves.
The concrete language syntax of baseline Dala looks like
this:

var account := object is iso {
var balance is public := 0
}
def branch = object is imm {
def branchName = "Main Street"
}
def teller = object is local {
def location = branch
var activeAccount
method switchAccount(newAccount) {
return (activeAccount := newAccount)

}

teller.switchAccount(account := erased)

def unsafeObj = object {
def leak = teller

}

def outerChannel = spawn { innerChannel —
def o = innerChannel.receive

}

outerChannel.send(unsafeObj)

That is, objects are created using the object keyword, and
may have a flavour specified using the is keyword. Both
local variables and fields may be created as constant (def) or
mutable bindings (var). Mutable fields may be made public
to allow access from outside the object, also using is, and will
otherwise be accessible only within the object. Assignments
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to mutable locations use the := operator, and the previous
value (if any) is returned. If the variable held an iso object,
the returned iso is now free to be stored elsewhere. erased is
a special value that can be assigned to a variable containing
an iso object when it is to be moved out. Threads can be
spawned with a block of code, and opposite ends of a channel
will be returned by spawn and given as argument to that
block of code.

The Dala system intends for its restrictions to be enforced
dynamically, with errors raised at the point that a viola-
tion concretely occurs, prior to any data race occurring.
Fernandez-Reyes et al. set out a specific, plausible approach
to this enforcement for each capability, but without particu-
lar justification for the combination of choices made.

In brief, the baseline Dala design proposes enforcement
of each flavour using a different mechanism as follows:

e imm - An object with this capability must have no
mutable fields, and the values put into its fields at con-
struction time must also be of the immutable flavour.
This enforcement is carried out entirely at the time of
construction.

e iso - The creation of a second reference to an iso object
is an error, and all kinds of object — including unsafe! —
must participate in this enforcement when their fields
are assigned. An existing reference can be explicitly
consumed, using a dedicated operation, to allow it to be
moved to a new location or thread. This enforcement
is carried out “outside” the object itself, by the system
or by other objects, at the time of assignment.

e local - A local object can be freely aliased, including
across threads, but dereferencing it on a thread other
than the creation thread is an error. This enforcement
is carried out “within” the object, at the time of deref-
erence.

All of the safe flavours enforce the hierarchical invariants
on their fields when they are set.

These are very defensible choices, but we can see that
there are different mechanisms being used within just this
single design. This contrast raises important questions. For
example, what if iso were enforced at the point of derefer-
ence, rather than when the reference is created? Or what
if local objects were prevented from crossing threads alto-
gether, rather than being checked at dereference time? What
if imm enforcement was deferred to the point of actual viola-
tion too, and raised an error only when a mutation occurred?
We seek to explore the design space of gradual, dynamic
enforcement of these types of dynamic capabilities, and to
understand the trade-offs made in both the original Dala
proposal and the alternatives we consider. It is clear that
there are many possible mechanisms, and combinations of
mechanisms, that would allow for different programs to be
written, different executions to be permitted, and different
errors to be raised at different times.
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The extended arXiv version of the Dala paper [9] notes
that its implementation, Daddala, differs slightly from the
formal model. For example, it performs syntactic rewriting of
the reference-consumption operation. The paper also specu-
lates about alternative implementation strategies to handle
corner cases that arise when embedding the model in a prac-
tical language:

While it is therefore [by static analysis]

possible to eliminate these errors (and other
implementation strategies, such as prox-
ies for isolates, can similarly address the

issue), our current prototype permits a pro-
grammer who goes far outside the model

to shoot themselves in the foot.

These deviations are seen there as mere practical compro-
mises, but we see them as openings for deeper consideration.
The ability to go “outside” the model makes for a different
model, with different restrictions, frictions, and guarantees.
Proxied isolates would have distinct semantics again —and
more variants in turn give different affordances, different
promises, and different errors. The original Dala work does
not consider these variations any deeper. In the next section
we set out a range of possibilities and show how meaning-
fully different language designs can arise from such small
practicalities when examined as more than just implementa-
tion details.

3 Design

To explore this design space, we set out six different axes of
variation, each with several candidate mechanisms listed. For
our exploration we selected a number of design points to give
reasonable coverage within this space. The axes and their
candidate mechanisms emerged from iterative discussion
and informed judgment, providing a structured framework
for comparison. The intention is that a particular design can
be represented as a combination of selections from each of
these axes. We have implemented each of these possibilities
in a prototype.

There are three “when” axes, one for each of the core ob-
ject flavours, and representing the trigger point where its
restrictions are checked and enforced. Each has different
practical options, but the three are independent of one an-
other and can be combined in any way — just as the baseline
Dala approach uses different mechanisms for each. The other
axes are more diverse, representing options relating to the
determination of an object’s flavour and the semantics of
moving iso objects.

The axes are as follows:

e iso-when - When is the iso capability enforced?

e iso-move - How is an iso object moved?

e local-when - When is the local capability enforced?

e capability-where - Where is an object’s capability
determined?
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e capability-change - When and how can an object
change flavour?
e imm-when - When is the imm capability enforced?

Each of the axes will be treated in more detail below, in-
cluding its candidate mechanisms. Within each axis, we list
the option chosen by Fernandez-Reyes et al. in Dala first.

3.1 When Is The iso Capability Enforced?
There are five options for enforcing the iso capability.

e assignment: It is an error to create a second reference
to an iso object. This is the baseline Dala behaviour.

e dereference: An iso object may only be dereferenced
when it has a single living reference, but additional
references may be created temporarily.

e thread: It is an error to transmit an iso object across a
thread boundary while multiple references exist.

o dereference-thread: Both dereferencing and thread
transmission of aliased isos are errors.

e never: iso is not enforced at all.

Baseline Dala enforces iso when any variable or field is
assigned a value, reporting an error whenever the assign-
ment creates an alias to an iso object. That is, an error arises
immediately on:

var x := objectisiso{...}
var y := x // iso violation, alias created

Dereference-time enforcement borrows the approach used
for local in baseline Dala described in Section 2, in which
the local capability is enforced at the time of dereferencing.
Under this model, temporary aliases to an iso object are
permissible, but all but one must be discarded before the
object is used. While violating the strict terms of the name,
permitting temporary aliases allows for patterns such as
swapping two iso objects via a temporary variable. The
above code would not produce an error with dereference-
time checking, but as soon as either x or y is dereferenced, a
violation is reported:

var x := object isiso{... }
vary :=x
y.someMethod(1, 2) // iso violation, dereference with alias

However, it would be possible to exchange two iso objects
via a third temporary variable, without dereferencing them
in the middle:

var a :=objectisiso{...}
var b := objectisiso{...}
vartmp:=a

a:=b//OK
b :=tmp // OK
a.run // OK

Thread-boundary checking takes a different approach. In
some respects, it brings iso closer to local. It indicates
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an object that can be aliased freely within a thread, where
data races cannot occur. However, the object can still be
transferred to another thread and used there, once thread-
local processing is complete. Again, the above cases would
not be errors, but it would not be permitted to send the object
across a thread boundary:

var x := objectisiso{..}

vary :=Xx

y.set 123 // to update the internal value of the object
def channel = spawn { channel2 — ... }

G A W N =

channel.send(y) // error, aliased iso crossing threads

Under the dereference-thread case, both the send on line
5 and the y.set on line 3 would be errors.

The “never” option here and in the other axes represents
an extreme of the gradual approach, and stands in both for
cases where the capability in effect does not exist at all in
this variant, and cases where other axes address (some of)
the matters of this axis. We do not distinguish these two
cases in this work as they do not impact the semantics of the
matrix of designs we are exploring.

3.2 How Is an iso Object Moved?

There are four options for “moving” an iso object, that is, for
transferring a reference from one variable or field to another.
An iso object that is not currently stored anywhere may be
put into a variable, passed as an argument, or returned from
a function, while one that is stored somewhere can only be
put into a new location according to one of these models.

e destructive read: An existing reference must be erased
by an explicit operation, returning the object ready
to be stored elsewhere. This is the baseline Dala be-
haviour.

e move: Any operation that would create a second refer-

ence to the object instead erases the existing reference

automatically, so that future access through that name
will fail.

newest: Aliasing an iso implicitly erases the previ-

ous reference, but when the alias ceases to exist (i.e.

goes out of scope, or is itself overwritten), the original

reference is restored and can be accessed again.

e immobile: An iso object can never move once stored.

Baseline Dala uses the destructive read approach, with an
explicit operation that both erases a stored reference and
returns the object to which that reference originally pointed.
This ensures that the original reference can no longer be
used, preventing unintended aliasing or reuse. Our prototype
implements this behaviour by overloading the assignment
operator := so that, when used as an expression, it returns
the previous value, and thus a destructive read is accom-
plished by assigning a replacement value; this semantic was
also used by the Daddala implementation discussed in the
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var x := object is iso { def num =1}

var y := (x := erased) // explicit consume operation
varz:=y

z := process(z)

print(y.num)

TR W N =

Figure 1. A trivial program that proceeds differently under
the different iso-move options. Line 2 performs an explicit
consume operation: x is erased, and the original object is
assigned to y. After that, x has no usable content, and y holds
the only reference to the iso object.

original work’s extended version, but with a layer of syn-
tactic sugar providing the illusion of a “consume” operator.
This behaviour is common in other systems with unique
references, but its drawbacks have also been noted [4].

Line 2 of Figure 1 shows the x variable being destructively
read and its value moved into y. Under the destructive read
model, line 3 would be an error, while under the move option,
z :=y successfully and implicitly moves the iso object from y
to z, automatically erasing y with the same sentinel value as
used explicitly on the previous line.

While “move” semantics are common in many languages,
the “newest” option is more unusual, and can be seen as a
kind of dynamically-enforced borrowing. The “newest” op-
tion allows an isolated reference to be passed as an argument,
automatically restored when the argument is no longer in
scope. However, it would also allow the new reference to
be stored in a field indefinitely, while still revivifying the
original much later.

Under newest, the assignment on line 3 of Figure 1 leaves
y in a suspended state. It is an invalid reference, but “re-
members” what it pointed to. On line 4, z can be passed as
an argument, resulting in a further newer reference that is
given to process, and so both y and z are suspended while
process runs. When z is assigned a new value after the func-
tion returns, y is reénlivened and can then be used on line
5.

With the immobile option, an iso object can never be
stored in a mutable variable, only an unchangeable def, and
none of Figure 1 would be possible.

3.3 When Is The local Capability Enforced?

There are four options for enforcing the local capability.

o dereference: It is an error to dereference a local object
on another thread. This is the baseline Dala behaviour.

e thread boundary: It is an error to transmit a local
object to a different thread.

e dereference-thread: Both dereferencing and thread
transmission of local objects are errors.

e never: local is not enforced at all.
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Baseline Dala enforces local at dereference time, making
it an error to send a message to a local object on a thread
other than the one it was created on. However, it does allow a
reference to a local object to be sent to and stored in another
thread, provided that it is never dereferenced there. If a local
object is sent to another thread, stored, and sent back, both
the retrieved and original reference can be freely used on
the original thread.

In Figure 2, the counter object is sent to another thread
via the channel channell on line 9. Within the spawned
thread, the object is recieved on the corresponding endpoint
channel? on line 5, and then sent back to the original thread
via channel2.send(obj) on line 6. The dereference-time
enforcement model allows this, but would raise an error on
line 7 when the obj variable is dereferenced on the other
thread.

Thread-boundary checking prevents a local object from
being sent, and in fully-safe code this ought to be sufficient
(depending on some choices on other axes). Under the thread
and dereference-thread models, line 9 would be an error im-
mediately, and the local counter object would not be per-
mitted to cross threads in the first place. With local never
enforced, there would be no error reported, but the data race
on lines 7 and 11 would occur and line 12 might print an
unexpected value.

With unsafe objects available, it is possible that a reference
to alocal is accessible from another thread without ever being
sent across a thread boundary. Figure 3 shows an instance
of this, where an unsafe object holds a reference to the local
object. Both dereference models would raise an error on line
9 when the local object is accessed: accessing the “value”
field would trigger the dereference-time enforcement, which
would detect that this access is from a different thread than
the one where the local object was created. The thread-only
model would not detect this, as the local object itself was
never sent across a thread boundary. Without the existence of
unsafe objects in the system, all three models would prevent
a potential data race of this sort from arising. Whether this
is undesirable, or the wages of the sin of using unsafe code,
is a philosophical question. On the other hand, preventing a
local object from being sent to another thread seems obvious,
but there are plausible cases where it is safe and useful.

3.4 Where Is an Object’s Capability Determined?

There are three options for determining an object’s capabil-
ity.

e static: The capability is determined at compile time
by the source code, and cannot be changed. This is the
baseline Dala behaviour.

e construction: The capability is determined at the time
the object is constructed, potentially using run-time
information. For example, a method could return a
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def counter = object is local {
var value is public :=1

}

def channel1 = spawn { channel2 —

channel2.send(obj)
obj.value := obj.value + 2 // data race with line 11

}

1
2
3
4
5 var obj := channel2.receive
6
7
8
9 channell.send(counter)

10 def otherCounter = channell.receive // same object

11 counter.value := counter.value + 3 // data race with line 7

12 print(otherCounter.value)

Figure 2. A local object sent to a newly-spawned thread in
a trivial program illustrating a data race, utilising immutable
bindings (def). Different enforcement models will detect and
report the error at different times.

1 def counter = object is local {

2 var value is public := 1

3}

4 def unsafeObj = object {

5 def tally is public = counter

6}

7 def channell = spawn { channel2 —

8 def obj = unsafeObj.tally

9 obj.value := obj.value + 2 // data race with line 11
10 }
11 counter.value := counter.value + 3 // data race w/ line 9

—_
nNo

print(counter.value)

Figure 3. An unsafe object, which may be transmitted across
or accessed on multiple threads, with a reference to a local
object. Under different models, the data race may or may not
be detected.

fresh object that is either local or iso depending on
parameters passed to it from the call site.

e variable-side: Rather than objects being born with a
specific flavour, variables and fields are annotated with
capabilities. Storing an object into such a variable gives
it the flavour indicated by that variable’s annotation.

Baseline Dala annotates objects statically with their capa-
bilities directly within the source code as part of the object
constructor syntax. The top part of Figure 4 shows this more
standard model, where the object constructor syntax includes
an is annotation setting the flavour of this object.

In the construction-time model, the syntax is relaxed so
that dynamic expressions, not just the three capability names
literally, can be used to determine the flavour of the object.
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// Object flavour determined statically
var w := object is iso { ...}
def x = object is local { ... }

// Object flavour determined by variable annotation
vary is iso := object { ... }

def z1 = object{ ...}

def z2 is local = z1

Figure 4. Illustration of the distinct syntactic forms for static
and variable-side capability determination. w and x are con-
structed with is iso determining their flavour at birth, as part
of the object constructor syntax. The object in z1 is local
because it is stored into a variable with that annotation.

With this approach, a factory method could accept local
or iso as a parameter, and the object constructor within it
could be annotated with that parameter, allowing the flavour
of the newly-created object to be determined at the call site.

The variable-side option is a drastic change from the base-
line, in effect permitting objects to start as unsafe and crys-
tallise into one of the safe capabilities according to how they
are used. The flavour of an object is not intrinsic to it, but
determined by the context in which it is stored — specifically,
the capability annotation of the variable or field that holds it.
The bottom part of Figure 4 shows this approach: the object
syntax itself does not refer to a capability, but variable decla-
rations do. z1 and z2 show an object that begins as unsafe
but crystallises into 1ocal once stored into a variable with
that annotation.

There are a number of nuanced interactions that arise with
other axes here. For example, if an object already has multiple
aliases and is assigned to an iso-annotated variable, under an
“assignment”-time check this should be an immediate error,
but with “dereference”-time checking there is no issue at this
point (although there may be expensive bookkeeping to do).
It is also conceivable that an object is held by both 1ocal and
imm locations: depending on the combination of other axes,
this could be an error, or it could be that the object must
comply with both sets of rules. This approach is the most
invasive, but offers a great deal of flexibility, particularly in
combination with some of the capability-change options.

3.5 When and How Can an Object Change Flavour?

Four models describe how and when an object’s capability
may be changed:

o fixed: Once an object has a capability, it can never be
changed. This is the baseline Dala behaviour.

e dynamic: There are operations to set the capability
of an object at any time.

e dynamic-iso: An iso object can be changed to local or
imm at run time, but no other flavour can be changed.
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e duration: For as long as a reference to an object as-
serting a given flavour exists, the object conforms to
those rules, but these relax if the last such reference is
destroyed.

Baseline Dala fixes the capability of an object for its entire
lifetime, and never allows it to change.

The dynamic-iso model permits the case of creating an
initially-mutable object and, after some initialisation phase is
complete, transforming it to one of the other flavours. As the
reference to an iso object is unique, reclassification cannot
violate capability assumptions elsewhere in the program.
This model is particularly useful for initialization patterns or
factory-based object creation, where an object can be safely
transformed after a controlled setup phase and be immutable
or local to a different thread thereafter. Both dynamic and
dynamic-iso enable the code in Figure 5, where an iso object
becomes local once transferred to the other thread.

Under the dynamic model, movement between any two
flavours is permitted, which can be useful in cases where
an object needs to adapt its capabilities based on runtime
conditions or interactions with other objects. However, this
flexibility comes at the cost of increased complexity and po-
tential safety concerns, as the programmer must ensure that
the object’s capabilities are correctly managed throughout
its lifecycle, particularly where the object may be shared
across multiple contexts.

There are interactions with other axes under this model.
For example, suppose an object has the local capability, and
there are existing aliases on the same thread, but it is now
converted to iso. Under the “assignment” model on the iso-
when axis, where aliases to iso cannot be created, this must
be an immediate error. On the other hand, under the “derefer-
ence” model on the same axis, there is no issue at this point:
multiple references to an iso object exist, and dereferencing
them will be an error until only one remains. The iso-move
“newest” model would seem to require significant bookkeep-
ing either at the time of the flavour change, or at all times
for all objects that may change. Under iso-move “move”, all
other references to the object must be invalidated, in the
manner they would have been if the object were moved out
of them, meaning they must all be tracked. In both cases, this
“action at a distance” may break expectations in other parts
of the code, and the programmer is relied upon to ensure
that the change can be handled. These and other interac-
tions are trade-offs for the designer when selecting points
on these axes, and this maximally-dynamic model imposes
significant costs. Certain programs are possible under the
dynamic model that no other model can express, but whether
those programs are worth those costs is a question for the
language designer.

The duration model pairs primarily with the variable-side
capability determination model, allowing the object flavour
to change fluidly as the set of variables holding references to
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def channell := spawn { channel2 —
var y := channel2.receive
capability.set(y, local)

}

var x := object isiso{...}

// ... setting up x ...

channell.send(x := erased)

Figure 5. The flavour of an object being explicitly changed
under the dynamic change models. The iso object is trans-
ferred to a different thread and then made local to that
thread.

it change. Capabilities are inferred from the type of reference
currently holding the object, and the object must comply
with the associated rules as long as that reference is alive.
Once an object is no longer held in an iso variable, for
example, it may be aliased freely — but if then stored into
a local variable or field, it must comply with the rules of
that flavour, affecting all references to it. Figure 6 shows an
example of this, where an object becomes local once stored
into a variable with that annotation. Line 11 may present an
error, depending on the position taken on other axes, because
although x does not have a local annotation, the object it
refers to is of the local flavour for as long as it is held in y.
On line 17, y is no longer in scope and so the restrictions on
x are relaxed.

Most of the cross-axis interactions discussed for the dy-
namic model also apply to the duration model, but the ben-
efits and the structure of programming that it fosters are
different. Certain combinations may be more naturally use-
ful alongside it than others, but the kinds of programs that
are intended to be supported will determine which for any
given language design.

3.6 When Is The imm Capability Enforced?
There are three options for enforcing the imm capability.

e construction: The imm capability is enforced at the
time of construction. This is the baseline Dala be-
haviour.

e mutation: An imm object may hold references to mu-
table state, but it is an error if state that has changed
after construction is accessed.

e never: The imm capability is not enforced at all.

Baseline Dala enforces imm at construction time, requiring
that all reachable state be deeply and fully immutable at
the moment the object is instantiated. This ensures strong
guarantees but restricts design flexibility.

Under the “mutation” option, immutability is enforced
lazily: objects may reference mutable state, provided that
the referenced state remains unchanged. If such state is later
modified and subsequently accessed, an error is raised at
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var x := object { ...}

// ... x is unsafe here ...

def channel1 = spawn { channel2 —
var obj := channel2.receive
obj := channel2.receive
obj.set(123)

}

method process(y is local) {

O 0 N N U R W DN =

// Object is local while this method is running
// because it is held in a local-annotated variable.

[EREN
=}

channell.send(x) // sending a local across threads
y.set(456)

_ =
w N

}

process(x)

— =
TSN

// At this point, x is unsafe again,

—_
=)}

// unless other local references exist
channel1.send(x)

—_
~

Figure 6. The variable-duration model permits the flavour
of an object to change freely according to the places refer-
ences to it are held. The flavour change applies to the object,
however it is accessed, so line 11 is sending a local object
across a thread boundary despite using the unannotated x
reference. However, on line 17, y no longer exists and so the
restrictions on x are relaxed.

runtime. For example, a mutable list could be created, values
added to it, and the list then stored in a freshly-constructed
imm object. The imm object can read from the list and use the
list’s non-mutating methods, but if the list is ever modified
by other code it will become inaccessible from the imm object
and an error will be raised if the object attempts to make
use of it. This permits patterns involving “effectively final”
values, offering greater flexibility at the cost of deferred
validation and potentially subtle errors.

The distinction between construction-time and mutation-
time enforcement is illustrated in Figure 7. Here, an imm
object defines a field a referencing a mutable object, whose
state is accessed in the method foo. With construction-time
enforcement, this program fails immediately due to assigning
a mutable object to a field of an imm object. Under mutation-
time enforcement, the program is valid until the second foo
call: when it accesses a.x it will observe the mutation that
occurred on line 9 and report an error.

The "never" strategy disables enforcement entirely. The
object still has the flavour and other checks may make use
of it, but immutability guarantees are forfeited.

—_
o
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def mutableObject = object {
var x :=1
}
def immutableObject is imm {
def a = mutableObject
method foo {a.x}
}
print(immutableObject.foo)
mutableObject.x := 2
print(immutableObject.foo) // error, x was changed

O 0 1 N U Wb W N =

Figure 7. A trivial program behaving differently under the
different imm enforcement models. Construction-time en-
forcement will raise an error on line 5, while mutation-time
enforcement will allow the program to run to line 10, where
the visible mutation will be reported.

4 Implementation

Our prototype implementation extends an existing Java-
based Grace interpreter with all of the axes of variation de-
scribed above. The implementation is not a high-performance
production system, implementing the semantics of the given
language variant directly, and makes no attempt at efficiency
of either computation or memory use. For example, it will
maintain reference counts for all objects where those may
be required, or wrap iso objects in proxy objects for some
of the iso-move variants, notwithstanding that a production
system could optimise much of this overhead away. Some
variants or combinations may not have efficient implemen-
tations available at all, and the excess work our prototype
performs to support the range of variants obscures the perfor-
mance impact of individual design choices. We are concerned
primarily with accurately reflecting the diverse semantics
across the matrix of designs.

Performance questions are not the focus of the present
work, and would be better addressed within a concrete con-
text. While it seems intuitively likely that some of the models
impose significant run-time overhead, we would be reluc-
tant to speculate too strongly on the practical magnitude of
this. It has been established by Roberts et al. Roberts et al.
[20] that high-performance optimising virtual machines can
often eliminate almost all costs of dynamic gradual type en-
forcement, despite the same widespread intuitions having
suggested the costs were inescapable. We are open to the pos-
sibility that fusion with, for example, the garbage collection
system may eliminate much of the overhead imposed, but
also that some of the models may be inherently expensive
with present technology. Our present work gives no substan-
tive evidence either way, so we will not make any claims
about it performance but commend exploring the practical
impacts of different of our models to future work.
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Design iso-when | iso-move local-when | cap.-where | cap.-change | imm-when
Dala assignment | destructive deref. static never construction
Late enf. dereference | conditionally aliasable | deref. static never mutation
Var. duration | assignment | destructive deref. var.-side duration mutation
Thread enf. | thread conditionally aliasable | thread static never construction
Borrowing dereference | newest deref. static never construction

Figure 8. The five designs being examined with these case studies mapped against the axes of variation.

Many programs can be executed under a wide variety of
the designs, but some require syntactic or structural changes
(for example, variable-side annotations or the insertion of
explicit moves). In some cases, while a program can be exe-
cuted under a variant, it may be “unidiomatic”, for as much
as that term makes sense in this context, by not using the fea-
tures of the variant where it could. For example, a program
that creates a new immutable object cloning data from an
iso object will still work on a variant that allows changing
the original object to be immutable, but it would be more
idiomatic to make use of that capability-change feature.

The full implementation is available from https://zenodo.
org/records/16939265 [7].

5 Discussion

While the six axes can be varied independently, coherent
selections of different points represent distinct paths of de-
sign. To see the impact of the different design choices, we
will focus on a small set of contrasting combinations on our
axes, shown with respect to the axes in Figure 8:

e Dala: The original Dala design, with the same mech-
anisms as described in the original paper. A local
object dereferenced on a different thread than it was
created on will raise an error, while creating a second
reference to an iso object immediately errors as well.

e Late enforcement: The latest, most dynamic enforce-

ment option on each of the when axes that is able to
detect an error. This design defers errors as late as pos-
sible, allowing the program to continue until it cannot
go any further.
The programmer is encouraged to experiment with
a running system, finding out concretely where as-
sumptions are violated. An iso object is able to be
aliased, and as long as the object is not dereferenced
the code will continue to run. While code that will
inevitably result in an error will be permitted to run, a
concrete instance of the error will always be produced,
potentially aiding development. In this way this ap-
proach gives an analogous story to programming in
dynamically-typed languages.

e Variable duration: Dynamically-changing flavours
for as long as a reference to an object exists in a vari-
able annotated with that flavour.

For example, an object stored in a variable or field
marked local is protected from access on another
thread for as long as it is there, and as long as code
relying on that restricted reference expects it to be —
but those constraints are relaxed once that reference is
no longer there. Similarly, an object stored in a variable
marked iso is certainly unaliased, but can be moved
into a local and changes flavour at that point.

Which properties are being relied on is always locally
manifest: code that needs a certain reference to be
thread-local or unique can assert that in situ, but in
contrast, code that is not expecting a reference to be
restricted may be surprised by action at a distance. This
design favours fluidity, and may be more amenable to
gradual adoption of safe capabilities in existing code.

e Thread enforcement: local and iso are enforced

when crossing a thread boundary only, focusing on
these threshold points.
Here in some respects the levels of restriction on iso
and local are reversed: an iso is a safe object with
an additional privilege of changing threads when the
reference is unique, while both can be aliased within
the same thread. An iso object without aliases is able
to be moved to a different thread with a destructive
read. In this case iso is likely not the best name, but
the semantics are plausibly desirable and again may
reflect existing, unannotated code more closely.

e Borrowing: References to iso are automatically bor-

rowed and returned, while local objects are enforced
at dereference time.
This model uses the “newest” option for iso move-
ment — where the most recent surviving reference is
the only usable one —and so common patterns like
passing a reference to an iso object as an argument
that is used and discarded are permitted. If the passed
reference is stored, the original reference is unusable
and so that will be detected if unexpected, but revives
once that stored reference is erased. It is analogous to
the static borrowing in many ownership systems, but
fully dynamic.

These five designs are not exhaustive, but they do rep-
resent a range of the design space such that every axis
varies at least once. Code in any of the designs other than
variable-duration will be syntactically valid in the others, but
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may have different error behaviour or be unidiomatic, while
the variable-duration design inherently requires syntactic
changes to code.

All of these designs present some advantages and some
disadvantages, according both to the task at hand and the
intended semantics of the program.

The borrowing model allows many straightforward op-
erations to be straightforwardly expressed, with no local
bookkeeping burden or need to care about the capability
system, while creating opportunities for errors reported far
from their cause.

The variable-duration model enables extremely dynamic
assertions of properties that need to hold right now. It even
allows data structures that deliberately cause changes of
flavour, such as a set that makes its elements immutable. At
the same time, it inherently and deliberately invokes spooky
action at a distance by modifying objects based on localised
statuses. The errors that arise far from their cause may be
confusing, and it is unclear whether the benefits are worth
this cost without empirical user testing.

Late enforcement forces the program to run as far as possi-
ble before producing a concrete instance of a failure. It allows
temporarily-invalid states to exist as long as they are not
part of the control flow. In doing so it saves the programmer
from pointless busywork to satisfy the compiler, but allows
execution beyond the point where errors were inevitable.
Exposing concrete errors that have actually occurred may
be helpful for development, but may also permit serious
flaws to reach production deployment. Already, different lan-
guages make different choices on this front (most obviously,
statically- and dynamically-typed languages), and the same
approaches used to study these may be applied to this kind
of error detection.

We do not suggest that our examination of these mod-
els is exhaustive, but hope to highlight the breadth of the
design space and that very different trade-offs have poten-
tial benefits for different uses, without identifying a single
“best” design. Any one of our candidate designs appears that
it could be useful for some language with some intended
use cases. Future work can explore specific designs in more
depth from both software engineering and pedagogical per-
spectives, as well as exploring the performance implications.

We do note a limitation uncovered in our experimentation,
but not directly related to the design space we are exploring,.
The issue relates to the “practical” embedding of the Dala
model within the Grace language, and was not noted in the
original Dala paper, but seems to be a limitation for real-
world applications of this kind of dynamic capability system.

The Grace language, like many others, has objects and
first-class code blocks that close over their enclosing lexical
scope, and retain privileged visibility and access to their sur-
roundings. An object literal or code block created within an
object’s method can access fields and methods of that object.
If that enclosing object is iso, this closure is in effect creating
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a forbidden second reference to the object. Similarly, an im-
mutable object could capture and make use of mutable state
exposed by surrounding scopes. Grace’s module system [11]
has a “dialect” feature explicitly built around these sorts of
injections into scope [12], and its inheritance can also bring
references into a scope [18]. While the baseline Dala model
has no issue with local in this way, due to dereference-time
checking, the other object flavours present a problem.

Some of our models — primarily those with late enforce-
ment — do permit these closures to be created while still
catching any actual errors that occur. We consider that a
possible point in favour of those approaches. Further static
analysis to detect and reject closures that make use of refer-
ences that violate the structural rules is another possibility,
although this results in a significantly less dynamic model,
and in some cases, such as code blocks used for control struc-
tures, it represents a quite severe limitation. Alternatively,
we suggest that it may be that there is an incompatibility
between this type of capability model and this type of lan-
guage, and so such a model is more fitting for a somewhat
more static style of programming language. For our imple-
mentation, we disregard the implicit references created by
these closures entirely, as they do not raise practical issues
in “normal” code not trying to exploit them. We leave re-
solving this issue, which we do not believe has been raised
previously in the literature, to future work.

6 Related Work

This work builds directly on the Dala capability model [8],
which introduced a minimal yet expressive set of capabili-
ties—local, isolated, and immutable—for ensuring safe con-
current programming. The original Dala system emphasized
a dynamic approach to capability checking, enabling interop-
erability between safe and potentially racy code, and made
a pragmatic set of design choices to balance performance,
safety, and simplicity. Our work extends this by exploring
the application strategies for these capabilities, showing that
their enforcement points—such as at thread boundaries or
dereference—significantly affect both the usability and guar-
antees of the system.

6.1 Capability Models and Concurrency

A broad range of work has explored ownership and capabil-
ity systems as tools for safe concurrency. Languages such
as Pony [24], Rust [15], and systems like Verona [2] enforce
capabilities statically to ensure race freedom. Our work fol-
lows Dala in retaining a dynamic enforcement strategy, but
investigates whether alternative enforcement locations (e.g.,
on dereference rather than message send) can influence ex-
pressiveness and safety. This complements prior work on
hybrid models like those of HJp [25] and gradual owner-
ship [23], which similarly seek a middle ground between
static guarantees and dynamic flexibility.
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Our exploration of delayed versus eager enforcement re-
sembles earlier debates in race detection and memory mod-
els [22], where tradeoffs between false positives, perfor-
mance,and programmer intent have long been discussed.
Unlike race detectors that flag violations post hoc, capability
enforcement offers a means for programmers to declare in-
tent—a distinction our experiments aim to make more precise
through variation in enforcement timing.

6.2 Channels

Rogliano et al. explore runtime mechanisms for enforcing
permission transfer semantics over channels in dynamically
typed languages [21]. Their system categorizes permission
transfer into four transfer modes, copy, full-transfer,
exclusive-write, and read-only, and implements these
via write barriers and partial-read barriers within a channel
framework. While both their system and Dala address data
race prevention through runtime enforcement, their focus
remains on channel-mediated access control, rather than
general-purpose object capability management. In contrast,
Dala’s design supports capability-based reasoning that is in-
dependent of the communication mechanism, and introduces
capability flavours to govern aliasing and transfer. Both sys-
tems demonstrate the utility of runtime enforcement, but
Dala offers a more flexible model that applies permission
control across general object interactions, not just channel
usage.

6.3 Handles

Another approach to reference control in dynamic systems is
the use of handles, as proposed by Arnaud et al. [1]. Handles
are behavior-propagating, first-class references that dynam-
ically impose access semantics, such as read-only or revo-
cable access, without relying on static types. Unlike Dala’s
capability model, which attaches semantic guarantees to
object references using flavour-specific constraints (local,
iso, imm), handles operate by interposing a proxy on each
reference, dynamically enforcing restrictions only when ac-
cessed through the handle. This approach allows semantic
behavior to propagate automatically through the reachable
object graph, enabling control over aliasing and mutation at
the level of individual references. While both systems share
a focus on safe reference management in dynamic languages,
Dala enforces constraints via explicit capability transitions
and destructive updates, whereas handles embed semantics
in reference wrappers that mediate behavior. Both models
demonstrate how reference semantics can be enforced with-
out static annotations, but differ in propagation mechanisms.

6.4 Variants of Isolation and Immutability

The notion of isolated references, central to our system,
echoes earlier models from Singularity [14], where own-
ership and isolation were used to support zero-copy message
passing. Similarly, our notion of deep immutability draws

Onward! "25, October 12-18, 2025, Singapore, Singapore

on work such as Glacier [6], which enforces recursive im-
mutability for conceptual clarity. While our system inherits
these semantics, we vary the conditions under which these
guarantees are enforced—exploring, for instance, whether
an immutable object’s fields must be transitively frozen im-
mediately or lazily upon first use.

Systems like E [16] and AmbientTalk [17] also combine
object capabilities with concurrency models (e.g., vats, ac-
tors), but typically embed these concerns at the language
design level. By contrast, our work modifies the runtime
semantics of a capability system without altering its sur-
face syntax, thereby illuminating how capability application
can shift guarantees without requiring new annotations or
constructs.

6.5 Applying Capabilities Dynamically

Dala’s original system emphasized dynamic enforcement
over static typing, similar to approaches taken in the Grace
language and Moth [20]. Our implementation continues in
this spirit, but introduces configurable enforcement modes
that allow developers or systems researchers to experiment
with new enforcement strategies. This has parallels to work
in runtime systems like Truffle/Graal [26], which optimize
dynamically enforced properties via speculative execution
and inlining.

While prior work on capabilities has focused on expres-
sivity and guarantees, we focus instead on where enforce-
ment occurs and how such decisions affect race freedom,
performance, and program modularity. To our knowledge,
this is the first systematic study of enforcement placement
within a reference capability system, and our results suggest
a nuanced space of trade-offs that are underexplored in the
literature.

7 Conclusion

We have shown a range of different approaches to enforcing a
relatively simple dynamic capability system, building on the
Dala data-race-freedom model proposed by Fernandez-Reyes
et. al [8]. Through examples of the behaviour of different
choices on six distinct axes of variation, we can see small
changes to enforcement creating meaningful programmer-
level impacts, and coherent selections of different points on
these axes creating significantly different language designs.
Our implementation of all six of these axes highlights the
practicalities of the trade-offs made in these, and we encour-
age further exploration of how and when these kinds of type
properties are dynamically enforced, beyond only consider-
ing their static semantics and treating practical implication
choices as irrelevant details, but rather incorporating them as
first-class concerns in the design of programming languages
and systems.
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