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Abstract
Programming languages have been trapped in a world of
linear textual representations fundamentally unchanged for
half a century. Even systems pushing beyond these forms —
visual languages, projectional language workbenches, and
end-user programming tools — largely ape the strictures
of stream-of-bytes compilers and confine themselves to the
popular paradigms of conventional textual systems.

Instead of recreating what succeeded in textual paradigms,
new programming systems should also be exploring what did
not— the confounding, confusing, convoluted approaches
that fell by the wayside—with the sorts of direct manipula-
tion, spatial connection, and change over time that textual
languages could never match; and they should use their
control of presentation to let the user choose the right repre-
sentation for a piece of code in the moment— and change
it. We argue that these two points unlock new frontiers for
programming systems, and present preliminary explorations
to highlight how multiple-representation environments can
lower the pressure on more speculative visual paradigms, to
encourage more investigation of this underexamined space.

CCS Concepts: • Software and its engineering→ Visual
languages; Functional languages; Data flow languages.
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1 Introduction
Most programming languages are text-based, and over time,
familiar patterns have stabilised in the design of these lan-
guages. Non-text-based “visual” programming languages
also exist, and fall principally into two camps: those that are
essentially graphical versions of successful approaches to
textual languages, and those that directly manipulate data-
or control-flow graphs.

This paper makes two arguments:

• first, that new visual programming systems should
explore a wider range of approaches, including areas
that have been unsuccesful in textual form;

• second, that the all-encompassing nature of both visual
and textual programming systems is fundamentally
limitating and has not been well-addressed in either
domain.

Visual programming languages have the opportunity to
explore aspects of programming that text-based languages
have not been able to capture, but to do so effectively they
must break out of the mould of existing languages. At the
same time, they typically embody a single visual paradigm
that the program must conform to, often with compromises
in editing, comprehension, or expressiveness that are not
ideal for all parts of the program or all audiences. Choosing
a different approach means choosing an entirely different
environment, and the programmer is stuck with that choice
for the life of the program; faced with these trade-offs, it is
no wonder that purely-textual systems, for all their limits,
tend to win out.
Instead, a system that allows the code to be presented in

multiple ways lets the right view of this piece of code be
used in the moment, without forcing it to be seen that way
forever. In so doing, representations that have more limited
uses can still be valuable, not having to be general-purpose
paradigms.
We argue for more exploration of the potential range of

non-textual programming models, including pathways that
seem to have failed in the past or have limited application,
and to work to allow these to coexist. After this, we will
present some preliminary explorations in this space in the
form of Djel, a visual, spatial, interactive programming en-
vironment including several contrasting representations of
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program code that can be switched between or used in differ-
ent parts of the program. In this way we can explore varied
possibilities without needing any one of them to carry the
full weight of the system. Section 5 then positions this argu-
ment and prototype in the context of existing work, outlining
the gaps where we encourage more speculative explorations.

2 Motivation
Previous work [30, 41, 64, 65] has found that simply having
the ability to look at a program’s code in a different modality
confers benefits to the programmer, even when there is no
editing in the alternative view, while different modifications
will be preferred in one view over another when the option
is available. At the same time, many programming tasks
are performed by people who do not consider themselves
programmers, or in concert with non-technical stakehold-
ers who are not interested or able to do programming or
understand program code. Both of these groups can then be
helped by exposing multiple different views of a program,
with different emphasis and different affordances. Having
these views be of the program directly, rather than a separate
diagram or model, ensures that they are always in sync, and
lets the program itself be seen in the most useful way for the
task at hand.

Visual programming systems that exist often do not serve
the programmer well. Their high viscosity [19, 55, 61], com-
bined with often-poor modularity, reusability, and other is-
sues [14, 22, 54], have been raised as serious problems for
professional programmers. For smaller end-user tasks, these
costs can be immaterial, but the opportunity for extension
or integration with larger systems is often lost in a closed
world. Often, these limitations result from trade-offs made
to support different uses, optimising for legibility over ed-
itability, for example, but the result is that the programmer’s
work is more awkward than needed much of the time.

The issue here is that the same tool —whether typical pro-
gram code or a visual environment—needs to be squeezed
into disparate uses [32]. A system that allows the represen-
tation to vary, not just in the large through different major
components using different languages, but in the small and
in the moment, can obtain the benefits of all of these ele-
ments, and relieve the pressure on any one of them to be
perfect.

2.1 Exploring the Unsuccessful
There have been very many programming paradigms put
forward, almost all of which have seen little success or lim-
ited areas of application. The elements that led to their being
proposed in the first place are still likely to have some value,
however, and if their drawbacks can be reduced then more
of their strengths can be exposed. Visual programming envi-
ronments provide additional dimensions to work with, but
most often just explore the same approaches as successful

textual languages. Here we are highlighting a market ineffi-
ciency, so to speak, where investigating those less successful
paradigms may find disproportionate benefits.
For example, block-based systems present, in effect, a

direct-manipulation rendition of the abstract syntax tree
of a textual language. In (only) doing so, they inherit the
limitations of those languages, and add the costs of visual
editing too. Virtually all of them also “trap” the program-
mer: there is no way out, or the way out means leaving
behind what they are familiar with permanently. Some sys-
tems offer an export to a textual model, and a few allow
both views to continue being used, including from Leber
et al. [39] and Bau et al. [4] — these provide a glimpse of the
multi-representation future we are advocating for, but are
still deliberately conventional languages.
It is understandable that educational environments pri-

oritise similarity to successful reference languages, but the
same is not necessarily true for practical uses. For example,
the concatenative language family (Factor, Joy, Forth, Post-
Script) gives a different perspective but is often regarded as
“write-only languages” because of the difficulty of reading
an unfamiliar program; on the other hand, they have been
feted as expressing composition in a direct, concise way, and
offering trivial abstraction of any part of code into a reusable
function [52]. Could a visual system reduce the difficulties
and expose the compositional abstraction more clearly? Our
argument is that at the least it is worth trying, and other
lesser-used paradigms will have similar trade-offs to explore.
In multiple-representation environments, such a paradigm
can be used where it is effective, with other representations
available to carry the weight of the overall program when it
is not, and so these explorations can have much lower costs
than otherwise.

2.2 A Call to Action
Our programming systems can expose the code in different
ways, can let the code be manipulated in the manner most
helpful right now, can expose the way of thinking about the
task at hand that is most useful to this audience, this user, this
moment— even if that way has drawbacks in other contexts.

Doing so enables new users to participate in the program-
ming process, whether they are interested in learning about
it or not. It enables the programmer to use the most suitable,
convenient, efficient modality for the task at hand, and with-
out being stuck with it for all tasks and all hands. Possibly
this will not work out— likely, in most cases, it won’t — but
currently there is too little activity in this vein to know.
The next section introduces one attempt to provide this

combination for a range of dataflow tasks, exposing several
different program representations tied together in a single
system, to illustrate the potential (and some limits) of this
approach.
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Figure 1. A simple program in the graphical dataflow view, transforming an input of a customer ID and list of shopping cart
entries into a sequence of individual customer ID, product name, total price entries. This program will evaluate to many rows
of output data for each input row, one for each item in the shopping cart. A user could scrub through each result or input to
trace the behaviour of their subprogram, and the output sequence may be consumed and processed further by another part of
the program, potentially in a different modality.

3 Djel
To support the motivations set out in the previous section
we present several different program representations within
an overarching environment. For this paper, we focus on the
use case of processing essentially tabular data, and offer a
number of speculative program representations suited for
that task, with the idea that multiple may be used within
the same program, and even on the same piece of code at
different times. We call this overall system Djel, but many of
its parts are severable, and what we want to highlight is the
breadth of what is possible from pursuing even a single par-
adigm in multiple ways. Not all of the elements we present
will be successful— at least one of them is almost certain
to be a dead end— and that is fine. Exploring the space of
possibilities to find out where there may be hidden value is
the more important goal.

The underlying model in a Djel program is a directed, lay-
ered graph, where vertices represent operations with inputs
and outputs, with inputs always from a node in an earlier
layer. and operations in the same layer known to be inde-
pendent of one another. These simple constraints facilitate
several very different approaches to displaying and manipu-
lating the program. We will show text-based modalities with
more efficient editing, visual modalities that communicate
the structure of the program, and modalities that foreground
the effects on the data being processed. All of these expose
the same program, but in different ways. The system per-
mits switching between these representations freely, and
communicates the correspondence between them through
animating the transition, giving each fine-grained compo-
nent a continuous visual identity throughout.

Evaluation can be conceptualised either as a flow of data
through the graph, or as treating each layer as consuming
and producing a tuple of values, with all layers composed
together. This duality is what enables some of the variety of
views possible, and is mostly transparent to the programmer.

To permit more complex tabular processing, we also per-
mit an operation to have multiple results: it may produce

multiple values for each of its outputs, in effect causing the
layer it is in to produce multiple “rows” of output. In this
case, multiple strands of evaluation proceed from this point,
with each later layer essentially “map”ped across all the rows.
Similarly, an operation could have zero results, terminating
this line of evaluation. These sorts of tabular operations, in-
cluding filtering out some rows, or inserting multiple rows
in place of one, are common end-user processing goals, but
here the complexities are abstracted behind the run-time
model. Not all programs (perhaps not even most) will need
this feature, but it aligns with one of the strengths of the
concatenative model we are exploring so we include it.

4 Representations
The following subsections each describe one core representa-
tions of a subprogram. All are interactive and can be edited.
While very contrasting, they all share the same underlying
model, and so the user can switch between them at any time.
However, some representations are more restricted and can
only display a subset of programs. The intention is that dif-
ferent functions the user defines will use a variety of these
representations, and they may move between them during
development.
The first three representations and the model of transi-

tioning between them we extend from earlier work [27]: a
stack-based concatenative language, a spatial grid layout,
and a graphical dataflow language, although the implemen-
tations of these views are not the same. We focus on the
novel design improvements in these sections.

4.1 Graphical Dataflow
The graphical view is an essentially conventional visual
dataflow language, where functions are nodes and data flows
along edges. The concrete values being operated on may be
displayed within the function nodes that produce them. In
this model, the graph explicitly has layers, and all connec-
tions go from left to right. Connections can be formed by
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(a) A trivial program in the stack-based concatenative repre-
sentation, with a single function selected and all of its inputs
and outputs indicated by lines to and from the respective other
functions. Data dependencies are shown this way, and the user
can interact with the display to trace the program.

(b) A similar program to Figure 1, but showing the need for
stack-manipulation operations in a concatenative language and
the limited information that would be provided without the
visual overlay.

(c) A more friendly top-level program, composing well-designed
helper functions to filter medical test results and produce the stan-
dard OHDSI OMAP Common Data Model-format mixed tabular
output, without requiring stack-manipulation operations. These
helper functions are in mixed representations themselves, with
keep-abnormal using the spatial grid and as-omap a graph view.

Figure 2. Some examples of programs in the stack-based
concatenative representation.

drag and drop, and functions replaced with type-consistent
alternatives from a menu.

This is a direct representation of the underlyingmodel, and
we present no particular novel features in this view. It serves
as an “executable diagram” depicting the overall structure
of the transformation the program performs, particularly
suitable for mixed-technical audiences where other sorts of
diagram may be used, such as UML or flow charts.

4.2 Stack-Based Concatenative
The stack-based concatenative representation renders the
dataflow graph as in a stack-based textual language like Fac-
tor [2], Forth [45], or Joy [63]. Programs in these languages
are sequences of operations that manipulate a stack of data
values, with each operation implicitly consuming some val-
ues from the stack and producing others into it. From an
alternative perspective, they are functional languages where
juxtaposition means function composition, rather than appli-
cation. The implicit connections between operations via that
stack define a dataflow graph, and so any program in this
model can be transformed into the graphical model behind
Djel. However, not every dataflow graph can be represented
in this model, as the stack is a linear structure and only the
operands on top can be accessed.
This model of language can be very efficient for a pro-

grammer to construct new pipelines in [16, 52]: composing

long pipelines requires little bookkeeping work, simply nam-
ing the composed operations, and abstracting out subfunc-
tions is trivial. However, they are completely inscrutable
to non-programmer audiences, and often even to program-
mers unfamiliar with the specific set of functions in use, to
the point they are sometimes called “write-only languages”.
Thus, while they can be highly productive for producing new
code, they are less suited for maintenance or communicating
to other stakeholders.
The motivating issue for this view in Djel is an inherent

challenge of the concatenative model, namely that under-
standing the functionality of unfamiliar code is difficult: it
requires mentally simulating the stack state at each point
in order to know which function’s output is being used as
which other function’s input. A visual environment offers op-
portunities to counter these difficulties while retaining or re-
inforcing the positive elements. These data dependencies can
be displayed explicitly, significantly aiding the maintenance
programmer, while retaining the quick, concise expression
that is the strength when writing new code, including new
code sited within an existing program.

In our earlier work [27], a stack-based representation was
exposed purely as plain text. In this work it is primarily a
structured representation instead, although the user can still
edit the program as ordinary text if desired. Figure 2 shows
a simple program in this view. Individual functions can be
selected or hovered over to overlay connectors to the sources
and destinations of that function’s inputs and outputs, as
shown in the figure. In this way, one of the primary difficul-
ties of stack-based languages—needing to understand and
track the arities of all nearby functions— is ameliorated by
the visual display. This allows the strengths of this style of
concatenative language to be exposed without the primary
drawback, using the additional dimensions that a visual en-
vironment has available. A program is a concise description
of simple compositional pipelines of functions that is easy
to write.
There are additional structural constraints for using this

representation, as in a stack language only the top elements
can be accessed. These are the same as in prior work, and
essentially require no wire crossing and that the last input to
each operation is also the last output of another. Programs
that do not meet the requirements cannot be displayed in
this view, but suffer no other ill effects, and can be edited
into a compatible form if desired. The system will not offer
this view as an option when it cannot be used.
This view in particular reflects where less-successful ap-

proaches to programming can be redeemed by a visual en-
vironment: the established weaknesses of comprehensibil-
ity are mitigated, while the strengths are untouched. Only
relatively small enhancements were needed to make the re-
sulting programs more accessible and understandable, but
these were simple and obvious within a visual-programming
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Figure 3. A simple program in the grid view operating on
public transport route information, showing functions spread
below the data value(s) they consume and above the values
they produce.
This program cannot be expressed in the stack-based view
because it uses values that would be below the top of the
stack; for example, the “Time Difference” operation uses the
two adjacent times without repositioning them first. The
flow of data is from top to bottom, with each operation laid
out below the values it consumes and above the values it
produces.

paradigm. However, there will still be times when other ap-
proaches aremore suitable, and theDjel approach of allowing
different representations to coexist lets the concatenative
style be used when it is helpful: a relatively linear pipeline
will go well there, while a more complex branching struc-
ture may go less well. Instead of throwing away the whole
approach, and its strengths, when it is an awkward fit for
some part of the program, it can be used for its strengths
when that helps, and mixed with other approaches when it
does not.

4.3 Spatial Grid Layout
The spatial grid notation also draws from previous work [25].
In this view, the program and concrete data values are inter-
leaved and able to be manipulated to edit the program.

The key motivation of this representation is twofold:
• to show the derivation of results, including the func-
tions and values contributing to them; and

• to allow easy exploratory program editing, even by
non-technical users.

Direct interactions allow investigating what else could have
been done at any point, or picking a data value or values and
seeing what could be done with them, without committing
to any significant restructuring.

There is a grid of cells representing functions, where lay-
out indicates the input and output relationships between
them. Each function stretches below all of its arguments and
above all its return values, and those values may be displayed
within the grid.

Figure 4. A program in a radial view, representing one of
the suggested use cases for the view, filtering and masking
information for data governance purposes. Values move out-
wards from the centre, being processed at each layer.

Figure 3 shows a program in this grid view. The flow of
data is from top to bottom: at the very top, subprogram
arguments and literal values appear, and below them are the
operations that consume them, and so on down the grid. In
between each row of functions is a row of values passing
between the functions above and below. To edit the program,
the user selects a consecutive sequence of values by dragging
across adjacent cells. The system will then present a menu
of operations capable of consuming all those values, and
choosing one will add it to the program at that point.

4.4 Radial Graph
Not all visual representations of a program will turn out
useful. Consider, for example, the view in Figure 4. Here
the program is displayed as concentric circles of operations:
arguments in the centre, with each outer layer being divided
into annular sectors representing operations consuming the
arguments to their inside. This “layering” corresponds to an
intuition expressed by users first encountering the semantics
of this system, so we explored some variations to find a
constructive model in this vein. However, it occupies a lot
of space, while not having room to display any values, and
does not present easy editing affordances; no variants of
it were significantly better. Despite this, it is possible that
some user will find this view, or an improved version of it,
to be useful for some purpose, and in a multi-representation
system modalities of more speculative value can be included
without needing to support use as a primary interaction.
While we cannot vouch for the utility of this view in specific,
we do value the exploration of possibilities that it represents.

4.5 Tracing Grid
This view is distinguished somewhat from the others as
it is not primarily about representing the program, but il-
lustrating the data-flow trace producing the outputs of the
program. We previously proposed a version of this view for
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Figure 5. This program in the tracing view is searching
transaction records for a shop for any purchases where a
customer spent more than 10.00 on any imported product.
Three inputs were given: a category to search for, a customer
ID, and a shopping cart of purchases.
The evaluation thread splits after the fourth column, with
each product from the cart taking up a row of its own from
then on, laid out beside the earlier, shared items. Reading
a row from right to left shows the sequence of precursor
values leading to that row’s output.
Some threads of evaluation stop early, marked with a red
hexagon; no further processing occurs after a dead end, so no
further cells are filled to the right. This subprogram produces
two results, and the user can trace why further paths were
dropped, and how the final products came about.

the jq language [26], but in this system it can be applied to
more general data-flow programs.

The principal role of this view is debugging or understand-
ing complex derived sequences of data values. This serves
both programmer and non-programmer users, as complex
pipelines that can drop values, or produce additional values,
can easily go awry, and identifying at which point this oc-
curs is challenging with both conventional programming
and other visual representations. The tracing view aims to
let a programmer see when their expectations are upended,
and to let a domain expert see how the program has treated
the full set of data points collectively to observe patterns
that need correction.

In this view, seen in Figure 5, the functions of the program
are displayed along the top of a grid, with the labels of their
outputs arrayed below (if any). Each row of the grid repre-
sents one pass through the pipeline: a cell displays an output
value of the function above, given all the outputs to its left.
When a function has multiple outputs, such as the toRGB
function that produces the red, green, and blue coordinates
of an input colour as separate outputs, multiple subcolumns
are arrayed below the function header.

A function that produces multiple results (that is, multiple
parallel sets of values for its outputs) will split the row at
this point, producing one row for each result. The cell to the
left will vertically span all of these rows, and to the right
the system continues as before. In the case of a function

(a) A very simple program in the applicative view, resembling
the example in Figure 3. The “before” and “after” names derive
automatically from the function output labels, but “cap” is a
user-defined name.

(b) The graph corresponding to the applicative program in (a).

Figure 6. A program in the applicative representation and
its corresponding graph.

producing no results, that row will terminate early, with no
further cells filled to the right.
This view shows the concrete flow of actual data values

through the functions of the program, but does not indicate
their structure or dependency explicitly. When hovering the
pointer over a column, the system will highlight the columns
used as input for that function, and thus the values used to
produce any given result in it. In common cases it resem-
bles a typical pattern in spreadsheets, where incremental
calculations are built up across the row, but here with more
inherent structure behind the computations. This view is
available for any program in the system, but is most useful
for programs that are closer to linear pipelines, especially
those that fork into multiple paths.

Some other indications of dependencies may be useful in
more complex programs, such as the overlaid connection
“hops” used in the stack-based concatenative representation
from Section 4.2. The present prototype does not provide
any such overlay, but of course the user can switch to more
explicit views at any time, and back to continue tracing the
program.

4.6 Applicative
The applicative view is a textual representation of the pro-
gram in an ML-like structure. Each line is a function call,
with its results assigned to a sequence of named variables.
The names are generated from the output labels, if any, or
otherwise from the types, but can be edited by the user. Func-
tion arguments are literals, named variables from an earlier
line, or nested function calls in the case of linear composi-
tions of functions. This view is a direct representation of
the underlying dependency graph, and so can represent any
subprogram in the system.

The value of this representation is familiarity for any pro-
grammer experienced in functional languages, with swift
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editing and the traditional affordances, while retaining com-
patibility with all the other views. Because it is a direct repre-
sentation of the underlying semantic graph, a user may make
edits in here even if showing a diagrammatic view to other
users is intended in future, and subprograms written here
can be used from any other view with no friction. This rep-
resentation offers the most efficient editing to a programmer,
while less accessible to non-technical audiences. However, as
plain text it is the most accessible to assistive technologies,
which are extremely ill-served by most visual programming
environments. The current prototype implementation only
presents a standard text box when in this form, but more
advanced IDE features could be added. The initial view after
transitioning into this form is a structured block-based one,
which does display some minor overlays for connections
and types, but it converts to plain text when the user begins
editing.
When transitioning to this format, function names, la-

bels, and types move to the corresponding points in the text.
Because (most) variable names appear more than once, as
many duplicates as are required will also animate to their
respective destinations.

4.7 Inline Concatenative
Inline concatenative languages are a rare form of the already-
rare concatenative languages, but do offer some advantages
for tracing and understanding. Initial visual representation
of these languages was proposed previously [28], but here we
do not take on the complexities of the prior work’s multiple-
track evaluation. In these languages, there are no variables
or hidden stack of data: all data values are directly embedded
within the program source, and execution (conceptually)
updates that source code.

A visual system can show each phase of single-step eval-
uation and the resulting program in sequence at once, so
that domain expert users can see where a computation goes
off track. The unique nature of this representation is that
these intermediate states are themselves valid, self-contained
programs: they can be promoted to editable, explorable func-
tions that can be refined, investigated, and incorporated into
the main program. Only the top row is editable, although
the later rows can be interacted with to display information
about the functions or values.
This view works for only a limited subset of programs,

and the present prototype has some difficulty determining
which those are. While it shows some promise, further work
is required to determine whether this offers benefits above
any other representation of the program.

4.8 Notebook
“Notebook” systems, such as Jupyter, are a popular way to
mix code and text in a single document, often used in data
science and other exploratory data analysis tasks. Typically,
there are interleaved cells of ordinary document content

Figure 7.A very trivial program in the notebook view, show-
ing a combination of the stack-based concatenative view and
the graphical dataflow view in the two code blocks. The sin-
gle result is seen below the final code block; a larger program
could produce multiple rows there. Clearly, programs in this
view can take up a lot of space very quickly, but in the con-
text of a practical notebook a more realistic-sized program
would not be an issue.

and code blocks, often in languages like Python, R, or Julia.
The code blocks can be executed in place, and the results dis-
played below the block; all blocks share a common execution
context, so variables set in one block are available in later
blocks. Code blocks can be edited in-place and re-executed
when the user has adjustments, or to refine the functioning
of the code. This paradigm is extremely popular, particularly
for users for whom programming is not the goal but a tool
for some other purpose. However, the notebook paradigm
has some significant limitations as well, in particular that is
is possible for the state of the notebook to become out-of-
sync with the code blocks, or for accidental dependencies
on later or removed code to be introduced. Some “reactive”
notebooks, such as Observable, have addressed this by laying
a dataflow graph over the code blocks, still implemented in
conventional languages avoiding some of these issues while
creating a discontinuity between components.

We can recreate this model in Djel, with a single continu-
ous flow through the notebook preventing out-of-order de-
pendencies arising. The text blocks of a notebook are simply
distinguished forms of comments, and code blocks subpro-
grams that can be displayed in any available format. Figure 7
shows a trivial notebook using two different representations
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in its code blocks at once. These notebooks may sometimes
be switched into other views, although most are not well-
suited for doing so.
The ability to do so, however, highlights the essential

sameness of the semantic model, and further extensions may
allow more advanced connections.

4.9 Embedding Other Models
Djel imposes structure at the boundaries of a subprogram,
but does not strictly require that the implementation within
that subprogram follow the whole model. Provided that it is
able to accept inputs and produce outputs in a compatible
way, it would be possible to embed other languages inside,
allowing an escape hatch from the model when necessary
or desirable.

To explore this possibility, we implemented an embedding
of the jq JSON processing language, which has a reminiscent,
but not identical, execution model. Ultimately, this embed-
ding was not as successful as hoped, and “similar” was not
quite similar enough— jq has some “capturing” semantics
that are critical to common patterns, but which Djel’s model
has no equivalent of— although a follow-up embedding of
the textual jq language as a self-contained function was more
effective. We discuss some of the discoveries from this ex-
periment in Section 5, including some possible extensions to
the Djel model that would allow the jq semantics to work.

4.10 Implementation
The implemented prototype system is a web-based environ-
ment accessible through a browser at https://djel.org/.

5 Discussion and Related Work
Our prototype exposes different views of code, and allows
them to be used in different parts of the program. This allows
some degree of freedom in choosing the right representation
for the task at hand, but not unlimited. Jakubovic [32, 33]
argues that “self-sustainable” programming systems are re-
quired, which will allow their users to choose, and build,
the right notations for the task. Particularly relevant is the
argument that

Instead of seeking the right notation, interface
or representation for the job, we might seek the
right textual syntax for the job. If we cannot find
one, the real reason may simply be that text is
not well-suited to the job ([figure of a spread-
sheet]). Yet if text is all we know, we will be un-
der the false impression that it is an intrinsically
hard job.

and the concept of “notational freedom”, the ability to choose
any desired notation for a part of the program with no cost.
Djel from the previous section is a step in this direction,
providing a variety of notations and allowing a degree of
run-time mutation, but does not meet the other criterion

of a fully open system with unrestricted mutation. It has a
selection of modalities, and code in the same program can
use a mixture, but there is always a single mode in use at one
time for one piece of code, and new modes are not creatable
within the system. In the cases where one of the available
modalities suits the task at hand, this works out as well, but
while there is a broader range than most systems it is not
unlimited. Future and alternative work could expose more
of the underlying structure to the user, allowing them to
build their own representations, and amore advanced editing
environment could permit better integration or nesting of
modes. At times it would be useful to have components
within a single displayed subprogram shown using different
modalities than the surrounding code that suit the moment,
which this system does not provide, but has been touched
on in other work.

5.1 Embedded Visual Representations of Code
Conceptually, visual interfaces for terms of a program origi-
nate no later than Smith’s Pygmalion [57], which had lim-
ited practical implementation. There are both total visual
languages, such as LabVIEW [12], and primarily-textual sys-
tems including embedded interfaces for select portions of the
code. Our model combines multiple representations in one
system, and there are two broadways such a hybrid canwork:
embedded visual representations within other code, and al-
ternative visual representations of the code. Our proposed
model is primarily aimed at the latter, to allow lower-stakes
exploration of different visual modalities, but there is value
in both. This section discusses existing work on visual rep-
resentations as part of other code, and Section 5.2 considers
systems that instead present multiple representations of the
same code.
Lorgnette [18] is a framework for incorporating domain-

specific editors for part of a program into conventional tex-
tual code editors. For example, colour pickers, tabular inter-
faces for editing tabular data, and run-time variable traces
could all be exposed within the editor in-place where the rel-
evant part of the code is, and the framework defines a general
approach to creating and integrating bespoke visualisations
or editors on top of any language. These views or editors
can be displayed alongside the code temporarily, and parallel
Hazel’s LiveLits [50], the hints from Tiled Grace, interactive
syntax in Racket [1], or Envision’s [3] editor projections,
among others.

Visual Replacements [5] is another model for embedding
domain-specific visual representations within a textual code
editor, glossing certain code fragments and potentially in-
cluding concrete run-time data. Elliot [10] introduced “tan-
gible functional programming” in which values can be dis-
played as editable GUI elements and higher-level values con-
structed out of them. Polytope [13] similarly combines text
and visual programming within one another, a hybrid system
with mixed structured and unstructured parts. Other than

https://djel.org/


Reclaiming the Unexplored in Hybrid Visual Programming Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

in the notebook view, Djel does not focus on the sorts of
composed embeddings that these systems do, but the direct-
manipulation interfaces are a potentially useful extension.
Mage [37] is a system for interwoven notebooks with vi-

sual, textual, and interactive components. Code is generated
in response to interactions, allowing most operations to be
performed by direct manipulation, with more typical code
as the backend result. Engraft [31] is a system for rich live
editing of data to produce persisting transformations, incor-
porated within broader programs. Its rich environments can
be nested inside one another, contribute data to one another,
and be slotted within external programs generically. Both
of these systems present a more direct mechanism for trans-
forming data than our prototype achieves, but they present
valuable pathways for building programs in the less-common
paradigms we suggest exploring.

5.2 Multiple-Representation Programming
Environments

A number of different approaches to wholesale multiple-
representation programming environments have been pro-
posed. In these systems, the same piece of code can be seen
and edited using different modalities, rather than contrast-
ing representations for different segments of the code. In
most cases, there is a core textual language that is “ground
truth” for the program, and visual representations are de-
rived from that, while systems supporting multiple visual
editing modalities as we have proposed are much rarer.
Within these systems, there are both switchable- and

simultaneous-display techniques, either allowing the user
to switch to and from the textual view, or displaying two
versions of the code alongside one another. Both switchable
and simultaneous displays have had benefits attributed to
them, but both have also been suggested to make tracking
the effect of changes harder. Our present prototype includes
only the switchable approach.

Tiled Grace [29] is a block-based editor for the pre-existing
textual Grace programming language, and introduced ani-
mated transitions between Scratch-like [53] block and tradi-
tional text representations. This system also includes some
“overlays” and “hints” that depict some additional informa-
tion on top of the main display, such as data dependencies,
previews of colour values, or selectable menus of known
accessory values like images. Droplet/Pencil Code [4] is
a switchable dual-mode editor with fixed configurations,
rather than freeform placement, which similarly includes
animated interstitial steps. Poliglot [39] provides simultane-
ous multiple-representation editing, with a block and text
display of the same program side-by-side. Edits on either
side are immediately reflected on the other, but some inter-
mediate states are invalid in one or the other language and
delay the update. All three of these fundamentally manip-
ulate a conventional text-based language, with the visual
representation as a secondary view of the “ground truth”

of the text. Our Djel prototype has multiple textual modal-
ities, but they are not the canonical representation, and in
our view depending on a (particularly pre-existing) textual
language for that imposes more constraints on the visual
language than is desirable; these systems also support only
a single non-textual format, rather than many. Simultaneous
display of multiple visual representations seems valuable at
least as an option, and future work should explore this.

Sketch-n-Sketch [23], a simultaneous dual-representation
editor for diagrams, allows both the diagram and textual code
that produces to be altered to affect the other live. It allows
abstraction of sub-diagrams into reusable components, but
the fundamental output is always a fixed SVG image.
Programming environments supporting alternative tex-

tual representations also have some history. Projectional
editors such as Cedalion [40], Gandalf [21], Mentor [8], and
Isomorf enable primarily textual representations, including
familiar-looking syntaxes for different language families,
and have been noted as providing enhanced interactions
combined with usability challenges for programmers [62].
Alternative textual representations like these are likely to
have value, but are not a focus of this work.

5.3 Graphical Dataflow
Data-flow programming in particular lends itself to graphical
representations [17, 47]. A number of node-and-wire visual
languages, like our raw graph representation, exist following
both data- and control-flow paradigms [34, 46]. These sys-
tems include Pure Data [6], Simulink [60], LabVIEW [12, 49],
ProGraph [58], Yahoo! Pipes, Unreal Blueprints, and oth-
ers [7, 14, 55]. Sometimes these are for specific purposes,
such as music production [48], while others aim for general-
purpose usage. These systems rarely display or focus on con-
crete values being processed, and alternative visual represen-
tations largely relate to graph layout algorithms only, while
maintenance tasks such as testing and debugging are often
reported to be challenges for these systems [36, 43, 55], par-
ticularly when input data changes. Multiple-representation
environments, especially where views foregrounding con-
crete values exist, counteract some of these issues: rather
than tracing a hypothetical through a graph, some of our
views (e.g. both grid representations) display the data values
and the operations affecting them in situ. Other tasks, such
as testing, are not impacted as much by the visual represen-
tation but by the closed-world nature of the system, which
our prototype continues, but which is not intrinsically part
of the path we propose.

Enso [11], previously known as Luna, is a hybrid dataflow
programming environment where the principal mode is con-
necting nodes in a graph on an infinite canvas, but nodes
often contain relatively complex textual code configuration
internally. Over time, the focus of the language shifted more
towards orchestration of components implemented in other
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languages, but there is also a textual format of the over-
all graph. Constructing complex data structures, which we
noted as a weak point in Djel, was a claimed strength of
Luna through specific visual nodes that ‘look like’ the final
shape (e.g. a table, a tree), although it is not entirely clear
how this panned out in practice.
Subtext [9] is a quasi-visual programming environment

representing data values inline with operations, and explicit
links between different points of the program. The core struc-
ture is a tree in the manner of an outliner [15], and evaluation
essentially by cloning and aliasing subtrees recursively. This
model is another possible representation that is unlike any
in our prototype, but it has some analogies with the inline
concatenative view; we speculate that a tree-based represen-
tation may be superior through having more well-defined
constraints.
Spreadsheets themselves are the most widely-deployed

data-flow programming method [20, 38]. They typically use
both specialised textual syntax and spatial references, and
more recently have included array and higher-order fea-
tures [66]. Common spreadsheet patterns operate on rows
of data, with cells making use of other cells to their left,
perhaps among others. Errors in spreadsheets arising from
calculation steps missed, or subtly altered, are a common
problem [44, 51], and one that more explicit definitions of de-
pendencies, and more exposure of intermediate calculations,
can help to avoid.

Thyrd [42] is a purely-visual concatenative programming
language and environment, where cells of a spreadsheet-like
grid represent operations and values of the program pro-
cessed in sequence. Intermediate results are not displayed
by default, but the program can be structured to do so (as
in a spreadsheet). Thyrd is one of very few explicitly con-
catenative visual systems, and sits somewhere between an
ordinary spreadsheet and the inline-concatenative view of
our prototype. While it is not clear that it overcomes compre-
hension challenges of the paradigm, its editing affordances
may be efficient and worth investigating as another view.

Natto [56] is a cards-on-canvas environment where each
card is a small program, often displaying its output, and con-
nections between cards indicate data flow. Other work in
this vein has used the aesthetic while focusing the choice of
operations in the cards themselves, including Capstone [35]
and Calling Cards [24], or within interactive widgets [59].
These are by and large operating at a higher level of abstrac-
tion than our prototype, but presenting individual functions
as “cards” would be a viable alternative representation.

5.4 Evaluation Model
A central element of the Djel prototype is the unified layered
dataflow model that underlies all the representations. The
layering enables the stopping and splitting operations, and
the lockstep functions-on-arguments presentations, while

the dataflow structure means there is conceptually a trace-
able path from input to any given output, continuous through
and inside user-defined functions it uses. These restrictions
and abilities all enable some of the representatations— e.g.
the layering is very directly employed by the spatial grid
view—but using this model everywhere also imposes limi-
tations on what can be represented and the breadth of repre-
sentations that are available. For example, choosing between
evaluating two segments of the graph is not possible, only
discarding one of the results at the end, and feeding back
the result of a (sub)program to the next execution can only
happen through a higher-order function defined in the run-
time. A different representation cannot alter these limits,
although one could wrap some decorator function around
the outside of what it displays (but none do currently). The
explicit layering reflects the findings of Muhammad [46]
that a visible, manifest ordering of execution is valuable in
end-user dataflow systems.
Our explorations with jq are illustrative: it has a fairly

similar model to Djel in most respects, but the differences
in detail were enough to make embedding it directly prob-
lematic, and much more so than anticipated. In particular,
it is very common in jq to capture all of the results of split
threads into an array value (to the extent that an array “lit-
eral” [1,2,3] is capturing three outputs from three execu-
tion threads!), but in Djel these splits cover the whole layer,
not just the values that directly caused the split; unifying
just the correct values back to a single array value is se-
mantically problematic as there may be parallel splits. These
obstacles of small differences have been a recurring issue for
multi-language projectional editors for textual languages as
well. On the other hand, translating at only the input and
output stage between the Djel and jq data models is rela-
tively straightforward, and then the interior semantics are
not important— indeed, at that point the inner code could
just as well be Python, Haskell, or Prolog, simply presenting
a black box to the outside. In some respects, this is where
the Enso/Luna [11] system settled, after facing similar com-
plications with only two representations. We believe that
offering more representations will reduce the need for this,
but semantic extensions to support greater variety are likely
to be helpful in future work.

The current prototype has uncovered some real strengths
of its model, but also limitations, some of which seem to be
caused by the model itself. High-level pipelines are easily
expressed and understood in the concatenative view, join-
ing together multiple other functions that “do the work”,
while the spatial grid is most effective for local transforma-
tions where the concrete data is important, and has been
the most common mode used for the data-massaging use
cases we have been experimenting with. Scaling, computing
differences of two columns, concatenating or formatting, or
eliminating a column are all quite clear in that view, very
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close to direct manipulation, and the result is seen imme-
diately. Switching views— sometimes for no more than a
single change, or with no specific modification in mind—
soon becomes second nature once it is available. The tracing
grid is extremely helpful for debugging pipelines that make
use of the multiplicity feature, but also scales poorly to large
datasets, or when there is heavy branching, something that
the model encourages by making it superficially free in all
views except this one.

6 Conclusion
Multiple-representation programming environments can ex-
plore a wider range of programming modalities, structures,
and affordances than any single representation can provide.
Supporting this allows the inclusion of representations that
have different strengths and weaknesses, including those
that have had limited uptake in the past, so that their bene-
fits can be obtained despite whatever drawbacks they may
provide in other circumstances. We have presented a proto-
type system incorporating several different editable program
representations, able to be switched between at will, to high-
light the breadth of the design space available following
these approaches.
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