
Dala: A Simple Capability-Based Dynamic Language
Design For Data Race-Freedom

Kiko Fernandez-Reyes

Uppsala University

Sweden

kiko.fernandez@it.uu.se

Isaac Oscar Gariano

Victoria University of Wellington

New Zealand

isaac@ecs.vuw.ac.nz

James Noble

Victoria University of Wellington

New Zealand

kjx@ecs.vuw.ac.nz

Erin Greenwood-Thessman

Victoria University of Wellington

New Zealand

erin.greenwood-thessman@ecs.vuw.ac.nz

Michael Homer

Victoria University of Wellington

New Zealand

mwh@ecs.vuw.ac.nz

Tobias Wrigstad

Uppsala University

Sweden

tobias.wrigstad@it.uu.se

Abstract
Dynamic languages like Erlang, Clojure, JavaScript, and E

adopted data-race freedom by design. To enforce data-race

freedom, these languages either deep copy objects during

actor (thread) communication or proxy back to their own-

ing thread. We present Dala, a simple programming model

that ensures data-race freedom while supporting efficient

inter-thread communication. Dala is a dynamic, concurrent,

capability-based language that relies on three core capabili-

ties: immutable values can be shared freely; isolated mutable

objects can be transferred between threads but not aliased;

local objects can be aliased within their owning thread but

not dereferenced by other threads. Objects with capabilities

can co-exist with unsafe objects, that are unchecked and may

suffer data races, without compromising the safety of safe

objects. We present a formal model of Dala, prove data race-

freedom and state and prove a dynamic gradual guarantee.

These theorems guarantee data race-freedom when using

safe capabilities and show that the addition of capabilities is

semantics preserving modulo permission and cast errors.

CCS Concepts: •Computingmethodologies→Concur-
rent programming languages; • Theory of computa-
tion→ Type theory.

Keywords: concurrency, capability, permission, isolation,

immutability

ACM Reference Format:
Kiko Fernandez-Reyes, Isaac Oscar Gariano, James Noble, Erin

Greenwood-Thessman, Michael Homer, and Tobias Wrigstad. 2021.

Dala: A Simple Capability-Based Dynamic Language Design For

Onward! ’21, October 20–22, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in

Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward! ’21),

October 20–22, 2021, Chicago, IL, USA, https://doi.org/10.1145/3486607.3486747.

Data Race-Freedom. In Proceedings of the 2021 ACM SIGPLAN In-

ternational Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming and Software (Onward! ’21), October 20–22,

2021, Chicago, IL, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3486607.3486747

1 Introduction
Most mainstream object-oriented languages do not rule out

data races – read-write or write-write accesses to a variable

by different threads without any interleaving synchronisa-

tion. This makes it hard to reason about the correctness, or

in programming languages like C and C++ even the meaning

of programs. Static languages such as Java or Go have higher

level constructs to control concurrency but, ultimately, noth-

ing strictly prevents data races from happening. Dynamic lan-

guages such as Ruby or Python repeat the same story: noth-

ing prevents data races, not even a global interpreter lock.

Many object-oriented languages added concurrency con-

structs as an afterthought, and objects may suffer from data

races. Data race free languages have implicit concurrent

properties as part of the “object model” and guarantee data

race-freedom. Examples of data race free languages are: E

which uses object capabilities and far references to forbid

access to (global) and un-owned resources [54], capability- or

ownership-based languages such as Pony [18, 19] or Rust [53],

or languages without mutable state, e.g., Erlang [2].

Freedom from data races simplifies avoidance of race condi-

tions, which happen when behaviour is controlled by factors

outside of the program’s control, such as the scheduling of

two threads. Data race free languages thus have a leg up

on “racy” languages in this respect, but data race freedom

always comes at a cost: languages either deliver “efficient

concurrency” or “simple concurrency” but not both.

Table 1 shows the features of eight data race free languages.

(Dala is our proposal, and we discuss its features later in the

paper.) The first four languages are statically typed. To main-

tain data race-freedom, these introduce new concepts which

permeate a system to: ownership, capabilities, capability

composition, capability subtyping, capability promotion and

https://doi.org/10.1145/3486607.3486747
https://doi.org/10.1145/3486607.3486747
https://doi.org/10.1145/3486607.3486747


Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

Table 1. Summary of features of capability-based static languages

Complexity \ Languages Pony Rust Encore RefImm E Newspeak AmbientTalk Erlang Dala

Capabilities 6 5 7+ 4 ✓ ✓ ✓ ✗ 3

Capability Subtyping ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Promotion, Recovery, Borrowing ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Compositional Capabilities ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Deep copying ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
Far References ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Data-Race Freedom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

recovery, and viewpoint adaption [12, 17, 19, 30, 53] (though

not necessarily all at once). This may have lead to a steep

learning curve [49]. In return, these languages deliver ef-

ficient concurrency: they allow large object graphs to be

shared or passed around safely by pointer, or allow multiple

threads to access different places of a single data structure

at once.

The next four languages are dynamically typed. These

maintain data race-freedom implicitly and requires the pro-

grammer to do little or nothing: objects are either copied

between “threads” [39] (which, while simplifying garbage

collection, may be expensive [58] and loses object identity),

or proxied back to the “thread” that owns them [11, 26, 55, 69],

which adds latency and makes performance hard to reason

about unless it is clear what operations are asynchronous.
1

The goal of this work is to deliver a design that provides

both simplicity and performance, and that may work both

in dynamically and statically typed programming languages.

To this end we present Dala,
2
a capability-based and dy-

namic approach to data race-freedom without mandating

deep copying and without the typical complexity of capabil-

ity systems. The Dala model allows mixing objects which are

guaranteed to be safe from data-races with objects that are

not and thereby supports the gradual migration of programs

to using only “safe objects,” by converting unsafe objects to

safe objects one at a time. Dala uses three object capabilities

to maintain data race-freedom: immutable values that can be

shared freely; isolated mutable objects that cannot be aliased

but can be transferred between threads, and thread-local ob-

jects that can be aliased across threads but only dereferenced

by the thread that created them. In this paper, we study our

capabilities in a very simple setting: an untyped object-based

language, leaving optional static typing for future work.

To support the design of Dala we contribute Dalarna, a

formal model of the core of Dala. We use this model to prove

that objects with capabilities cannot be subject to data races,

nor can they observe a data race except via explicitly unsafe

parameters passed to their methods. We also show that Dala

1
E, Erlang, and AmbientTalk are also distributed languages which motivates

their copying and proxied reference approaches.

2
A “Dala Horse” is a small carved wooden toy horse — a handmade little

pony [19, 31, 62]).

supports a form of gradual guarantee [67, 68]: the addition

of capabilities preserves the dynamic semantics, modulo run-

time errors that check that the program behaves according

to the programmer’s explicitly stated intentions, e.g., disal-

lowing a write to an immutable object. The Dala model can

be embedded into a wide range of garbage-collected object-

oriented languages, such as Java, TypeScript, Ruby, OCAML,

Swift, Scala, Go etc. To demonstrate that Dala has the po-

tential to be practicable, for both statically and dynamically

typed programs, we have a proof-of-concept implementa-

tion, Daddala, which embeds Dala in Grace [3, 41, 57], built

on top of Moth VM [61].

Contributions and Outline.
1. We overview three inherent problems in race unsafe

and safe programming languages, and discuss the

current approaches in ownership- and

capability-based systems (§2).

2. We introduce the Dala capabilities that allow safe

interaction between programs containing data races

from parts that should remain data race-free (§3).

3. We show how Dala tackles the three inherent

problems in §2 (§4).

4. We provide a formal description of Dala and its core

properties (§§5 and 5.3).

5. We provide Daddala, a proof-of-concept

implementation that (anecdotally) shows the relative

ease of embedding Dala in an existing system ([32]).

§6 places Dala in the context of related work, and §8 con-

cludes.

2 Background: Perils of Concurrent
Programming

To set the scene for this paper we discuss common prob-

lems in race unsafe (e.g., Java) and safe concurrent languages

(e.g., Rust). First we discuss balancing complexity and perfor-

mance (§2.1); then how tying safety to particular concurrency

abstractions leads to a one-size-fits-all model which leads

to problems with compositionality of concurrent abstrac-

tions (§2.2); last we discuss the problem of providing escape

hatches to permit behaviour that is not supported by the

programming language (§2.3).



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

2.1 Balancing Safety, Complexity and Performance
Safe languages have (implicit) concurrency mechanisms to

prevent data races. FromTable 1, we argue that the constructs

or systems fall into three categories: complex and efficient,

simple and inefficient, and complex and inefficient.

Complex and Efficient. Pony, Rust, Encore as well as

Gordon’s work on reference immutability are race-safe by

controlling access to shared data, rather than banning its

existence [8, 18, 19, 35, 53]. This is achieved by providing

concepts that are not common to every day developers, such

as capability and ownership type systems. These allow both

efficient and data race-safe sharing and transfer of ownership

with reference semantics. This allows e.g., passing a large

data structure across actors by reference, which subsequently

allows fast synchronous access by the receiving actor. Im-

plementing a concurrent hashmap in these systems requires

up-front thinking about how keys and values may be ac-

cessed across different threads, and mapping the intended

semantics onto the types/capabilities that the languages pro-

vide. For example, in Pony, a concurrent hashmap will be an

actor; to allow multiple threads to know the existence of the

same keys, the keys must be immutable; etc.

The cost of safe efficient data sharing is complexity: ca-

pability type systems introduce complex semantics such as

capability promotion, capability subtyping, capability recov-

erability (e.g., getting back a linear reference after it was

shared), compositional capability reasoning (i.e., combin-

ing capabilities to produce new capabilities), and viewpoint

adaption (i.e., how to view an object from another object’s

perspective, e.g., Pony uses viewpoint adaption to write para-

metric polymorphism [51]). Understanding these concepts

is key to write code that is efficient and free from data races.

Some form of unique/affine/linear reference is often the

cornerstone of many of the static capability systems. Such

references are extremely powerful: they provide reasoning

power, they can often be converted into other capabilities

(e.g., to create cyclic immutable data structures) or to transfer

ownership of objects across threads. However, polymorphic

behaviour is typically a source of great pain for these systems.

For example, consider a simple hashmap – concurrent or not.

If values can be unique, a lookup must remove the value

out of the data structure to preserve uniqueness (and the

associated entry to reflect this in the hashmap). If values are

not unique, this behaviour is counter-productive. Behaviours

like this force duplication of code.

Simple and Inefficient. ASP [10], ProActive [9], Erlang

[2], E [54], AmbientTalk [22, 27], Newspeak [6, 7], functional

objects in ABS [42], among others, avoid data races by deep

copying objects in messages (for some languages modulo

far references, see Complex and Inefficient). This approach

is relatively simple and the price for data race-freedom is

copying overhead paid on every message send.

In addition to using more CPU and increasing the memory

pressure, deep copying loses object identity, and requires

traversal of the objects transferred, a O(#objects) operation,
possibly requiring auxilliary data structures (adding over-

head) to preserve internal aliasing of the copied structure.

Erlang requires two such traversals: the first calculates

the size of all objects to enlarge the receiving process’ heap

and the second copies them across. Erlang’s deep copying is

key to keeping process’ heaps disjoint, which simplifies con-

current garbage collection and reduce overall system latency.

In languages that compile to Java, like ABS, ASP, ProActive,

etc., the run-time is unable to see or leverage actor isolation.

A concurrent hashmap in Erlang has no choice: its keys

and values must be immutable, and are therefore safe to share

across multiple processes (but are copied anyway, see above).

The internal hashmap data structures must be immutable

too, which might be less efficient.
3

Complex and Inefficient. To support safe sharing with-

out losing object identity, E [54], AmbientTalk [22, 27], and

Newspeak [6, 7] support far references. A far reference is

a proxy that allows an object owned by an actor/process

to directly reference another’s innards, but all interaction

with the proxy is lifted into an asynchronous message and

sent back to the owner, to be executed there. Thus, despite

the fact that many actors can point directly to an object,

only its owning process will ever read or write the object.

Thus, with proxies, there is a cost per access which can be

expensive [58].

In E and AmbientTalk, proxied (far) references must be

operated on asynchronously and only non-proxied (local)

references allow synchronous access. Code that needs to be

“proxy-agnostic” must use asynchronous access. In E and

AmbientTalk, promises are also implicit proxied references.
4

This means that asynchronous sends (x←) may be delayed

indefinitely if the promise is never fulfilled, meaning the x’s

value is never materialised so there is no recipient of the

message.

Implementing a concurrent hashmap in AmbientTalk (E

andNewspeak are similar) does not need any capability anno-

tations to track how values stored in the map may be shared

across threads. Promises remove the need for callbacks, but

indirections make the implementation more complex or con-

voluted. As a blocking synchronisation on the result of a

promise is not possible, we must use the promise chaining

operator to access the (possible) value in the promise.

While syntactically simple, the inability to access resources

directly makes reasoning about performance hard. The main

implication of not allowing direct access is that we neither

3
Erlang Term Storage provides a way to escape this design of Erlang, but

at a cost of dropping to a much lower-level of programming and manual

memory management.

4
E calls them promises, AmbientTalk calls them futures. We will refer to

them as promises [52].



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

know if far references are ever going to be fulfilled nor if the

promise chaining combinator (on far references) makes the

owning actor (of the promise) the bottleneck of the system.

2.2 Safe One-Size-Fits-All Concurrency
In race unsafe languages, abstractions are broken by the

addition of concurrency constructs. For example, inconsis-

tencies in an object’s internal state during a method’s execu-

tion, which are hidden in a purely sequential system, may

be observed if the object can be accessed concurrently. This

problem of object-oriented languages and their “unsafe” con-

currency features was first studied by M. Papathomas [59].

Yet, there are plenty of abstractions and programmingmodels

that guarantee data-race freedom, such as implementations

of the actor model [13, 24, 74]. In languages like Akka [74],

the model is data race-free as long as all code in a system

adheres to a set of guidelines [1].

These guidelines tie concurrency safety properties to their

concurrency model, suffering a “one-size-fits-all” problem.

For example, Akka can only guarantee data race-freedom

when the program (follows the guidelines and) stays within

the actor model. Spawning threads in an actor can easily

break its concurrency safety, e.g., data race-freedom.

Thus, to implement a concurrent hashmap, an Akka pro-

gram might simply wrap the standard Java hashmap in an

actor. As long as the hashmap itself is never leaked from

the actor, and the actor does not create additional threads,

all updates the hashmap will be sequential and therefore

free from data races. Whether the keys and values are safe

from data races is beyond the control of the hashmap, and is

ultimately up to the diligence of the programmers (e.g., to

maintain uniqueness or immutability).

In E, AmbientTalk, and Newspeak, (as well as many lan-

guages that did not fit in Table 1 such as ABS, Pony, Proac-

tive and others), the mechanisms that guarantee data race-

freedom are inherently linked to the languages’ chosen con-

currency models. In this case, the near and far references

span (affect) other concurrency models. Using the example

from before, global objects can be safely protected by locks

but this cannot be easily accommodated
5
and the run-time

may throw an exception when multiple threads have access

to a shared object [23].

2.3 Safety May Beget Unsafety
In safe languages based on capabilities or ownership types

(e.g., [8, 18, 19, 53]) it is sometimes necessary to side-step

the type checker, to write low-level code that interacts with

hardware, or when the type system is not “clever enough” to

allow a correct behaviour. We exemplify these cases in turn.

Hardware Meets Software. Graphic cards constantly read

from video memory and developers can write directly on the

5
This can be partially mitigated by adding futures, which imposes again

other concurrent semantics to maintain the safety properties [23]

frame buffer that points to the video memory to update the

image in the next refreshing cycle. Implicitly, this means that

there is a data race between the graphics card and the main

thread; such racing behaviour may show flickering of the

image on screen. A double buffering technique removes this

flickering, using an on-screen buffer that the graphics card

reads, and one off-screen where developers write the next

scene. A swap operation swaps the buffer pointers from off-

to on-screen. This common – and racy – approach prevents

the flickering.

Trust Me, I Know What I Am Doing. As all statically typed

languages, capability- and ownership-based programming

languages are engaged in a balancing act of expressivity and

complexity. Simplifications made to the systems to reduce

the programmer’s overhead will invariably lead to exclusion

of valid programs, simply because the system is not powerful

enough to express its behaviour within its model.

We can illustrate this using the concurrent hashmap ex-

ample in the context of the Encore programming language.

Encore suffers from the problem mentioned in §2.1 where a

hashmapmust choose between supporting unique references

(and therefore always moving values in an out), or not (allow-

ing them to be in the hashmap at the same time as they are

referenced elsewhere). This can be solved in Encore by drop-

ping to the underlying language to which Encore compiles

where no such checks are made, and implement, for example,

parallel put and get methods that accepts linear values even

though this is unsound in the type system, and transfers

them (hopefully) correctly. Other languages (e.g., Rust) may

have an unsafe block, or provide reflective constructs that

are unsafe from a capability perspective. Naturally, all such

code gives rise to technical debt.

In order to circumvent shortcomings of the capability

systems, programmersmay resort to escape hatches that void

the guarantees of data-race freedom. If data races happen

inside an escape hatch, the behaviour is undefined [20, 43]. In

Pony (and Encore), if an unsafe block introduces a data race

the run-time (garbage collector) might eventually crash [20].

There is no safe interoperability between unsafe and safe

code!

2.4 Summary
The data race-freedom guarantee of safe languages comes

at a cost of complexity or inefficiency, or both. Furthermore,

most or all languages’ safety is tied to a specific concurrency

model, and may not compose with others. Finally, data races

are sometimes desired, or a systems’ notion of safe is too

safe to express correct code. Escape hatches overcome these

problems, but at a cost of losing data race-freedom.

In the next section, we describe our simple model that

is efficient, concurrency-model agnostic, and provides safe

interoperability between unsafe and safe code.



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

3 An Overview of The Dala Model
Objects in Dala are associated with capabilities that describe

how they can interact with other objects. The association

happens at creation time and is fixed for life. We refer to

immutable, isolated, and thread local as the “safe capabilities”.

Programs which only operate on a safe heap are guaranteed

to be data-race free. When it is not important to distinguish

between an object and its capability, we will say e.g., “a local

object” to mean an object with a local capability or a “safe

object” etc.

The following code creates an immutable object with

a field f with value v and a unary method m with body

t : object { use imm; def f = v; method m(x){t} }. Fig. 1

shows the interaction of capabilities: arrows show all le-

gal references from an object with one capability to another,

modulo reflexivity.

The Dala capabilities form a hierarchy; imm < iso < local

< unsafe. Objects can only refer to other objects with the

same or lesser capabilities: an immutable object can only

refer to other immutable objects; an isolate object can refer

to other isos or imms, and a local object can refer to imms,

isos, and other local objects. The model treats objects outside

Dala as having a fourth unrestricted unsafe capability for

uniformity. Using unsafe objects in a Dala program makes

it susceptible to data races. Because it is the top capability,

objects in the safe heap (imms, isos, locals) cannot refer to

objects in the unsafe heap, while unsafe objects can refer to

anything (see Fig. 2). The implication of this model is that

once an object is safe, its entire reachable object graph is

safe as well. Thus: data races can only occur in unsafe objects.

By including unsafe objects in the model, we can describe

the semantics of a program partially annotated with Dala

capabilities.

Avoiding data-races by ensuring that two threads do not

concurrently execute a code block that accesses the field f
of some object o at the same time focuses on code. If there is

another place in the program that also accesses o’s f field

which could be run at the same time, a data race could still

happen. Making the object safe means that all code that inter-

acts with o must follow the rules that make o safe from data

races. If o is local, it cannot be shared across threads, so all

accesses to its f field will come from the same thread. If o is
immutable, all accesses to f will be read accesses which are

benign. If o is isolated, two accesses to its f field by different

threads require an explicit transfer from the first thread to

the second thread (possibly via additional “stop-overs”).

Dala capabilities are self-protecting in the sense that safety

stems from a capability’s own internal restrictions, not from

restrictions elsewhere in the system. Writing to a field of an

imm throws an error; so does aliasing an iso
6
, or accessing a

6
This property can be implemented by ensuring that all code external to

an iso accesses it via a proxy object with movement semantics, e.g., by

overloading the = operator. A simple implementation is possibly using

local object from outside of the thread it is local to. Imagine

that objects’ fields are private, and that field accesses implic-

itly go through a getter/setter indirection – in this case all

the checks necessary for an object to maintain its invariants

are in its own internal code. This is an important part of the

design and key to adding unsafe capabilities in cases where

these cannot be expected to be cooperative in avoiding data

races. Fig. 3 shows how capabilities restrict certain effects in

the system. Due to the absence of static types, these restric-

tions are enforced at run-time, meaning the cost of data-race

freedom is (roughly) per access.

Dala’s isolated objects are the key to efficient transfer

of mutable state between different threads. (Immutable ob-

jects can be shared directly without causing problems, and

thread local objects are permanently confined within their

owning thread.) Isolates have only one unique incoming ref-

erence, and some extra care must be taken to preserve this

uniqueness. Dala incorporates an explicit consume opera-

tion that destructively reads [40] the contents of a variable,

and prevents those contents from being used again, similar

to C++’s “move semantics”. The contents of any mutable

variable may be consumed but variables containing isolates

must be consumed—otherwise the attempt to read the isolate

will fail. Experiences by Gordon et al. [35] suggest explicit

consume is to be favoured over implicit

The consume operator succeeds on all variables except

the special self variable. This makes an isolated self variable

effectively borrowed [4], meaning its value is tied to the

current stack frame. Because the value of self cannot escape,

expressions such as x.m(y) when x is an isolated object do

not need to consume x and are guaranteed not to introduce

any alias to x, other than through self on subsequent stack

frames. With this borrowing-like behaviour, it is possible to

traverse isolated structures without consuming them (a well-

known problem when dealing with unique or linear values),

but notably only using internal methods: x.m is allowed to

borrowwhereas m(x) is not. Since overcoming this limitation

is well-known, we refrain from discussing this any further.

Dala guarantees that data races can only happen in places

with unsafe objects, never in objects with safe capabilities

(Theorem 5.5: Data Race Freedom). Developers can easily

add capabilities to migrate from a “racy” program to a data

race-free program with the certainty that this migration is

semantics preserving, modulo permission and cast errors

(Theorem 5.6: Dynamic Gradual Guarantee). These two prop-

erties are key in Dala and we will formally state them in

§5.3.

3.1 Simple Case Study: A Concurrent Hash Map
To illustrate the simplicity of the Dala capabilities, consider

the implementation of a simple concurrent hashmap in Fig. 4.

linear proxies and allows unsafe objects to race on iso stack variables (as

they already can on fields in Dala).



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

horisont
uppsala
       2009

Uppsala universitets årsmagasin

Spädbarns sociala  
kompetens

Fler farmaceuter  
i vården

Innovationer inom  
life science

Professorn som  
skapar blixtar 

Iso

Unsafe

Imm

Local

Safe Heap Unsafe Heap

Iso

Imm

Local

Unsafe

Figure 1. Dala Heap.

Field contents

Object Imm Iso Local Unsafe

Immutable • × × ×

Isolated • • × ×

Local • • • ×

Unsafe • • • •

Figure 2. Structural restrictions.

Effects

Object Read Write Alias Transfer

Immutable • × • •

Isolated • • × •

Local • • • ×

Unsafe • • • •

Figure 3. Capabilities and effects.

Assume that the hashmap is created inside a lightweight

process, eventually calling the tail-recursive run() method

with the channel msgs. The run() method reacts to input

sent on the channel. It dispatches on the op field of messages

received, and additionally expects the fields key and val to

be present depending on operation.

A hashmap has five moving pieces: the hashmap object

itself, the array of buckets, the entries in the buckets, and

the keys and values of the entries. We examine the possible

capabilities of these in turn to ensure thread-safety of the

hashmap implementation.

For keys and values, there are two possibilities: iso and

imm. In the former case, the keys and values can be trans-

ferred between the hashmap and its clients. In the latter case,

they can be shared but also never change. It makes sense for

keys to be immutable so that any client thread can know of

their existence and ask for their associated value. We capture

this in the code on Line 7 by calling the built-in freeze() op-

erator that is the identity function on immutables, or creates

an immutable copy otherwise (like in Ruby).

For values, iso and immmake sense under different circum-

stances. A sensible hashmap implementation should store

only a single reference to its values, so the same code base

should be reusable in both scenarios. The code in Fig. 4 sup-

port values which are both iso and imm. The key lines are

9, 11, 21, 34, and 40 which always move a value. Our field

assignment makes use of “swap semantics” where the old

value of the field is returned on an update. As a result, a get

operation will move the value associated with a key out of

the hashmap and remove the corresponding entry (Lines

20–21). (But see §4.3.1!)

From a thread-safety perspective, linked entries that con-

stitute a bucket could be either immutable, iso, or local. Im-

mutable entries would complicate the code when entries

are unlinked (Line 20). Iso entries would slightly complicate

searching through linked entries while maintaining unique-

ness (lines 16–18 and 29–32). Thus, our entries are local (Line

37).

A similar thought process applies to the array of buckets.

However, as our entries are local, we have no choice but to

make the array local as well. For simplicity, the implementa-

tion of the array is elided above but we include Line 48 to

explicitly show this choice. (As suggested by lines 15–16 and

27–29, our implementation assumes an empty bucket has a

dummy entry for simplicity.)

Consequently, the hashmap itself must be local (Line 2).

This ties the hashmap to the thread or lightweight process

where it was created which does not seem unreasonable.

3.1.1 Gradual Transition to Dala Capabilities. Notice
the bottom-up thinking when assigning the capabilities in

the previous section. In a top-down approach, we might

have decided to make the hashmap an iso to support its

movement across threads or processes. This would have

excluded local from the possible capabilities for the buckets

array and its entries. When retrofitting existing code to use

Dala capabilities, the bottom-up approach is superior to the

top-down approach as it will incur the smallest possible

change to the program. Assume the code in Fig. 4 was written

as now, but without capabilities in mind: including no use

declarations on Lines 2, 37 and 48, no consumes on Lines 34

and 40, and no freeze() on Line 39, etc. In this case, changing

the keys to be immutable is simply adding the freeze() call

on Line 39. All other objects in the hashmap can remain

as-is. Similar, making values isos only needs the two consume

operations, and changing msg.val to msg.val = null on lines

9 and 11.

Because of the structural constraints imposed on objects

with a capability, top-down migration is likely to require

bigger changes. For example, adding the use local on Line

2 will require adding a capability to the bucket array on Line

47–49. This will propagate to the entries and their keys and

values.

A good regression test suite might be useful to help drive

adding annotations regardless of the approach.

3.1.2 Constructing andUsing theHashmap. While or-

thogonal to the Dala capabilities, Fig. 5 illustrates how a

program might construct a hashmap (lines 1–8) by spawning

a new process with an associated channel that creates the

hashmap and connects it to the channel.

When calling the constructor (Line 9), the caller gets a

channel that can be used to send messages to the hashmap.

It is easy to construct a proxy for a map that captures the

channel used to communicate with the map, and uses a ded-

icated channel to get the reply (lines 11–24). The current

map_proxy creates a new channel per interaction with the

concurrent hashmap. This allows it to be immutable. If the



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

1 map = object { // hashmap
2 use local
3

4 method run(msgs) {
5 msg ←msgs
6 if (msg.op == "done") return "done"
7 k = msg.key.freeze(); c = msg.reply
8 if (msg.op == "get") c ←get(k)
9 if (msg.op == "put") c ←put(k, msg.val = null)

10 if (msg.op == "update") {
11 get(k); c ←put(k, msg.val = null); }
12 run(msgs)
13 }
14 method get(key) {
15 link = buckets.get(key.hash() % buckets.size)
16 while (link.next && link.next.key != key) {
17 link = link.next
18 }
19 if (link.next != null) {
20 target = link.next = link.next.next // unlink
21 return target.val = null // return result
22 } else {
23 return "Failure: No such key"
24 }
25 }

26 method put(key, val) {
27 link = buckets
28 .get(key.hash() % buckets.size)
29 while (link.next &&
30 link.next.key != key) {
31 link = link.next
32 }
33 if (link.next != null) {
34 return link.val = consume val
35 } else {
36 link.next = object { // link in bucket
37 use local
38

39 key = key
40 val = consume val
41 next = null
42 }
43 return "Success"
44 }
45 }
46

47 buckets = object { // array implementation
48 use local ...
49 }
50 }

Figure 4. Simple concurrent hashmap using the Dala capabilities. Note that x.f = new returns the old value of x.f and is used

to move isos in and out of the heap.

creation of map_ch was moved outside of the object, a local

proxy per client would make more sense. This change would

be captured by changing Line 12 to use local. (Line 18 is

just defensive programming.)

With the code in Fig. 5 in place, map_proxy.put(k, v) will

asynchronously communicate with the concurrent hashmap

even though it looks like a synchronous operation.

The message object on Lines 16–21 is the first example

of creating an iso. Because isos can only hold other isos or

immutables, key must be immutable. If it was local, it would

err due to the structural constraints. If if was an iso, it would

err due to the lack of a consume. As a consequence of the

use iso on Line 17, there is thus a guarantee that any call to

map_proxy.put(k, v) that would share mutable state across

threads would throw an error.

3.1.3 Dala Properties andConcurrencyModels. Recall
that the Dala capabilities are a set of rules for constructing

objects (structural constraints) that guarantee that – with

the exception of explicitly unsafe objects – programs are

safe from data-races. Unless a reference to an unsafe object

is passed in as an argument, a method inside a safe object

cannot see an unsafe object. Furthermore, while unsafe ob-

jects can store references to safe objects, they cannot violate

their properties. Assume for example that an unsafe object

u is shared across multiple threads and that the safe object s
is stored in a field f of u: u . f = s .

1. When s is an imm, it cannot be subject to data-races

because it cannot be updated. If all field accesses are

required to go via setters, this can be implemented by

having all setters throw an error on use.

2. When s is an iso, it cannot be subject to data-races

because iso’s can only be dereferenced on the stack

(i.e., we allow f .д but not x . f .д when f contains an

iso). Thus, any thread wanting to do u . f .д must first

transfer the contents of f to its local stack where it is

unreachable from all other threads. This means that

multiple threads can race on the f field of the unsafe

object, which is not a race on s . The simplest implemen-

tation of iso’s ensure that variables containing iso’s are

destructively read. (This however requires that unsafe

objects cooperate in preserving the properties of isos.)

3. When s is a local, it cannot be subject to data-races be-
cause it can only be dereferenced by its creating thread.

All other attempts to dereference throw an error. Pass-

ing the local around freely and using its identity is

allowed, but this is not a data-race. Forbidding derefer-

ences can be implemented by recording the identity of

the creating thread and checking it against the identity

of the current thread at the beginning of each method-

/getter/setter.



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

1 method new_hashmap() {
2 return spawn (msgs) {
3 map = object {
4 // Code from Fig 4
5 }
6 map.run(msgs)
7 } // returns channel
8 }

9 map = new_hashmap()
10

11 map_proxy = object {
12 use imm
13

14 method put(key, val) {
15 map_ch = ... // channel
16 map ←object {

17 use iso
18 key = key
19 val = consume val
20 reply = map_ch
21 }
22 return ←map_ch
23 }
24 }

Figure 5. Constructing and using the hashmap in Fig. 4

(In addition to the checks mentioned above, all setters

must check that the structural constraints are satisfied, infor-

mally:OK(o. f = o′) if capability(o′) ≤ capability(o). Getters
must also throw an error if used to retrieve iso’s.)

In our concurrent hashmap example, we used an Erlang-

esque model with lightweight processes and channels for

communication between processes. Dala capabilities are not

inherently tied to a specific concurrency model. For example,

in a language with support for actors/active objects, the

hashmap in Fig. 4 might have been an actor, and run()might

be replaced by different methods called asynchronously. In

this case, the process to which the bucket array and its entries

are local would be to the implicit thread of the active object.

4 How the Dala Model Addresses the
Concurrent Problems in §2

We now revisit the problems in § 2 and show how Dala

addresses these problems.

4.1 Balancing Safety, Complexity and Performance
First, programs with only safe objects are safe from data

races. Allowing parts of a program to be unsafe is useful for

several reasons: transition to guaranteed safety can happen

incrementally without a full-blown rewrite; there may be

elements in a program’s surroundings that are unsafe but

that we still may need to access.

With Dala, we set out to deliver both simplicity and effi-

ciency.
7
Dala has only three capabilities (not counting un-

safe). Our design avoids complexities like capability subtyp-

ing, promotion and recovery. As will be exemplified in §4.3.1,

dynamic checking enables flexible programs without relying

on concepts like capability subtyping. Our capabilities are

also orthogonal to concepts like deep copying, and far refer-

ences (summary Table 1) and inter-thread communication

can be efficient as Dala avoids deep copying.

4.2 Safe One-Size-Fits-All Concurrency
Adding the Dala capabilities to an unsafe language does not

change its existing semantics or the fact that data races can

(still) happen (in unsafe objects). Capabilities prevent the

7
See §7 for a discussion on both these claims.

introduction of data races in the safe heap, empowering the

objects with safe semantics.

While our formal model in §5 uses channels, this choice

is “unimportant” and was driven by the desire to reduce

the complexity of the formal model. (An earlier draft of this

paper used actors, but this introduced unnecessary com-

plexity.) The Dala model can be applied to other concurrent

models, e.g., actor- or lock-based concurrency models, and

combinations.

For example, we could allow far references to local ob-

jects. With this design, a client of the hashmap in Fig. 4

could call get and put etc. directly. This works well with

our design with keys are values being isolated or immutable.

If Dala capabilities are used in an actor-based system, the

story would be similar, and local objects would constitute an

actor’s private (mutable) state, and isolated objects enable

efficient transfer of arguments in message sends. If locks

are available, they could be useful for operating on unsafe

objects, which might potentially be shared across threads.

4.3 Safety Begetting Unsafety
Dala introduces safe interoperation between unsafe and

data race-free fragments. From the Data Race-Free Theorem

(Theorem 5.5) and Progress and Preservation (Theorems 5.1

and 5.2), unsafe objects may be involved in data races but do

not produce undefined (untrapped) behaviour. More impor-

tantly, unsafe objects cannot create errors that are observable

in the safe heap.

An implementation of a racy double-buffering can use

unsafe capabilities without compromising the safety of any

safe capabilities. However, with the current rules, unsafe

capabilities cannot read local capabilities, which may lead to

the programmer wanting to propagate the unsafe capability

annotation through the system. A slightly weaker version

of our system would allow unsafe capabilities to read fields

of local capabilities freely. Since local objects cannot contain

unsafe objects, any data race due to this weakening is not

visible to the local object, which voids the need for unsafe

propagation.

4.3.1 Supporting both Immutable and Isolated Val-
ues in a Hashmap. Because of the inherent flexibility of

dynamic checking, it is simple to add an additional operation



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

Programs P ::= t
Fields F ::= f = w

Methods M ::= methodm(x) {t}
Terms t ::= w | let x = e in t

Expressions e ::= w | x . f | x . f = w | x .m(w)
| ::= x ← w | ← x | spawn (x) {t}

| ::= ■i ι | K copy x | K obj {F M}
| ::= (K)w | v

Variables w ::= x | consume x
Values v ::= ι | � | ⊤

Capabilities K ::= imm | local | iso | unsafe

Figure 6. Syntax of Dalarna.m, f , and x are meta-variables

representing method, fields, and variable names; metavari-

able x includes self. � is a run-time value representing an

empty channel.

that behaves like get, but returns an alias to the value in the

hashmap of Fig. 4. This operation would throw an error if

used on isos, but work fine on immutable objects. We can

even implement it by extending the existing get method:

method get(key, move) {
// additonal parameter controls movement semantics
// lines 15−19
if (move) { /* lines 20−21 */ }
else { return link.next.val; /* create alias */ }
// lines 22−24

}

This overcomes the problem pointed out previously forcing

developers to choose one particular semantics or duplicate

code, and does not compromise soundness.

5 Formalising the Dala Capability and
Concurrency Models

To formally study the Dala model and clearly state and prove

its key properties (Data Race-Freedom and Dynamic Grad-

ual Guarantee), we formalise Dala in a minimal concurrent

object-based language which we call Dalarna, which we de-

scribe in this section. In Dalarna, objects have the usual fields

and methods, and there are no classes and no inheritance.

Threads are created by a spawn operation which also sets up

a channel for communication. Channels support both refer-

ence semantics and value semantics for objects depending

on their capability meaning Dalarna is a shared-memory

model. However, with the exception of unsafe objects, two

threads sharing a common object o cannot implicitly transfer

objects between each other by reading and writing fields in

o. Hence, with the exception of unsafe objects, objects are

effectively running in a message passing model, which may

use shared memory under the hood for efficiency, without

compromising safety.

Not modelling classes or inheritance is a choice driven by

the desire to keep the system minimal. We note that dynam-

ically typed languages are less dependent on inheritance,

because of the non-need to establish nominal subtyping re-

lations. Our simplifications allow us to focus on the most

important aspects of our work. Handling permissions and

capabilities in the presence of various forms of inheritance

is well-known (e.g., [12, 14, 46, 70, 75]) in a statically typed

world including problems that may arise in an untyped set-

ting. Therefore, we do not believe that these simplifications

accidentally suppress any fundamental limitations of our

approach.

For simplicity, channels themselves cannot be transferred.

There is nothing fundamental about this simplification but

undoing it requires some design thinking which is not im-

portant for the paper at hand, such as, whether or not we

allow multiple threads connected to a single channel to race

on taking the next message, etc.

Figure 6 shows the syntax of Dalarna. As is common,

overbars (e.g., f ) indicate possibly empty sequences (e.g.,

f1, f2, f3, . . .). To simplify the presentation of the calculus

programs are in A-normal form [33]: all subexpressions are

named except for the consume expression. We further assume

that programs use static single-assignment form [63], i.e., the

let-in term always introduces a new variable, field reads

are assigned to variables before they are bound to other

variables, etc, and that self is never aliased. None of these

constraints are essential for the soundness of our approach.

A program (P ) is a term (t ). Terms are variables and let-

bound expressions (i.e., x and let x = e in t ). An unusual

design choice borrowed from [19] is that assignment, L = R,
binds the left-hand side L to the value of the right-hand side,

R, and returns the previous value of L. (This is not uncom-

mon when dealing with iso fields, and previous work in

this area enforce it via an explicit swap operation [37–39]).

Expressions are variables (w), destructive reads (consume x ),
field reads (x . f ), field assignments (x . f = w), method calls

(x .m(w)), a deep copy operation (K copy x) that returns a
copy of an object graph with capability K , an object literal,

a casting operation that asserts a capability ((K) v), and a

spawn operation that creates a new thread. At run-time, the

expression syntax also includes values. An object consists

of fields (f = x ) and methods (M) and are instantiated with

a given capability K . For simplicity, methods have a single

argument (e.g., x ) and more can be modelled using an object

indirection using an unsafe object.

Spawning a new thread using spawn (x) {t} introduces a
new channel x both at the spawn-site, and inside the scope

of the new thread whose initial term is t . The t is closed,
i.e., it cannot access variables declared from an outer scope.

Channels are bidirectional unbuffered with blocking seman-

tics on sending and receiving operations. The send operation

x ← w putsw on channel x , if necessary blocking until the



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

E ::= • | let x = E in t | x . f = E | E ← w

| v ← E | ← E | K obj { f = v f ′ = E F M}
| x .m(E) | (K) E

H ::= ϵ | H , ι 7→ K i obj { f = vM} | H , x 7→ v
| H , ι 7→ chan {i,v}

Cfg ::= H ;T
T ::= ϵ | t i | Err
Err ::= ErrN | ErrA | ErrP | ErrC

Figure 7. Definitions of evaluation context, store and run-

time configurations.

channel is “free” (i.e., contains �). The sender then blocks

(■i ι) until the message i is received by the thread on the

other end of the channel ι. The receive operation ← y is

similar to a send and blocks the current thread while the

channel is “free”. Values are locations (ι), the “absent value”
⊤ used to populate a consumed variable or field, and �, used

at run time to indicate that a channel is empty.

For simplicity, we assume that programs do not attempt to

consume self, which can be enforced through a simple syn-

tactic check, and that all variable/method-parameter/channel

names are distinct and none is called self. This is a common

restriction in the literature, and key to avoiding breaking of

abstraction [15].

5.1 Dynamic Semantics
We formalise the dynamic semantics of Dala as a small-step

operational semantics with reduction-based, contextual rules

for evaluation within threads (Fig. 7). The evaluation context

E contains a hole • that denotes the location of the next

reduction step [72]. We write the reduction step relation

H ;T ⇝ H ′;T ′ which takes a reduction step from heap H

and a collection of threads in T , to a new heap H’ and a new

thread state T ′. A store H is either empty (ϵ), or contains
mappings from variables to values, and from locations to

objects and channels (Fig. 7). The superscript i in K i
repre-

sents the object’s thread owner and we used it to keep track

of ownership of local objects (omitted from the rules when

not relevant).

A configuration Cfg is a heap H and a collection of con-

currently executing threads T . A thread is either finished

(ϵ), a term t i (where i represents the thread owner id, omit-

ted when not necessary), or a run-time error (Err). There

are four kinds of run-time errors: consumption errors (ErrA,

which occur when a program accesses a consumed value);

permission errors (ErrP , which occur when a program vio-

lates the structural constraints imposed by its capabilities);

cast errors (ErrC , which occur when a program has a dif-

ferent capability than the one casted to); and normal errors

(ErrN ), such as accessing a non-existing field, calling a non-

existing method, etc. The execution of threads is concurrent

and non-deterministic. The non-determinism comes from

C-Eval and the commutativity equivalence rule.

(C-Eval)

H ; t ⇝ H ′;T ′

H ; t T ⇝ H ′;T ′ T

H ;v ≡ H ; ϵ

T Err ≡ Err

T T ′ ≡ T ′ T

F f = v ≡ f = v F

M M ≡ M M

The reduction of a program t begins in an initial configu-

ration with an empty heap ϵ ; t (Definition B.1, [32]). In the

remainder of this section, we go through the reduction rules,

ending with a discussion of the error trapping rules that dy-

namically trap actions which (might) lead to data races. For

capabilities, the following relations hold: unsafe ≤ local,

local ≤ iso, and iso ≤ imm. The ≤ relation is reflexive

and transitive. isImm(H , ι) (etc. for other capabilities) holds if
H (ι) = K obj {_ _} and K = imm.

The reduction of the let term updates the heap with a

stack variable x pointing to the value v (R-Let). Reading a

variable with a non-isolated object reduces to a location (R-

Var); reading an isolated object involves moving semantics:

moving the contents of a variable using consume reduces to a

location, and leaves a⊤ token in the variablewhichwill cause

an error if accessed before overwritten (R-Consume). Con-

suming fields is not allowed. Instead, one consumes a field

when doing an assignment, e.g., let x = (y. f = z) in . . . ,
places on x the object pointed by y.f and places z in y.f.

Reading a field (x . f ) reduces to the value stored in the field

(R-Field). Note that to read an isolated object’s field one

must update the field and place another object in its stead —

directly reading an isolated field would create a new alias.

The helper predicate localOwner(...) checks that if the target
object is local, then the current thread is its owner. (This

prevents threads to access unowned local objects.)

Updating a field (x . f ) with a value (v) reduces to returning
the previously held value in the field and updating the field f
to point to value v . There is a check that prevents mutating

immutable objects, OkRef(H ,K,v) ensures that the object v
can be placed under an object with capability K , and the

remaining helper predicates check that if the target object

(x) is local, then its owner is the current thread and if the

source (v) is local then its owner is the current thread.
8

(Other reduction rules repeat this local ownership check and

for space reasons we omit mentions in the remaining rules.)

An object literal (R-New) checks that values of its fields

do not violate the structural constraints imposed by its ca-

pability K , and if K is local then the current thread must

own the local fields. R-New returns the (fresh) location of

the object.

Calling a method on an object referenced by x and with

argument v reduces to the body t of the method with self

8
This design is good for JIT compilation since local objects have guarantees

to not point to unowned local objects (Corollary 5.3), thus removing some

unnecessary dynamic checks from possible implementations.



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

(R-Let)

x < dom(H )

H ;let x = v in t ⇝ H , x 7→ v ; t

(R-Var)

H (x ) = ι
¬isIso(H , ι)

H ; E[x ]⇝ H ; E[ι]

(R-Consume)

H (x ) = ι
H ′ = H [x 7→ ⊤]

H ; E[consume x ]⇝ H ′; E[ι]

(R-Field)

H (x ) = ι H (ι) = _obj {_ f = v M }
¬isIso(H , v) localOwner(H , i , ι)

H ; E[x .f ]i ⇝ H ; E[v]i

(R-FieldAssign)

H (x ) = ι H (ι) = K obj {f = v f = v ′M }
¬isImm(H , ι) OkRef(H , K , v)

isLocal(H , ι) ⇒ (isOwner(H , i , ι) ∧ localOwner(H , i , v))

H ; E[x .f = v]i ⇝ H [ι 7→ K obj {f = v f = v M }]; E[v ′]i

(R-New)

∀f = v ∈ f = v . OkRef(H , K , v) ∧ (K = local ∧ isLocal(H , v)) ⇒ isOwner(H , i , v)
ι fresh H ′ = H , ι 7→ K i obj {f = v M }

H ; E[K obj {f = v M }]i ⇝ H ′; E[ι]i

(R-Call)

x ′, y′ fresh H (x ) = ι H (ι) = _obj {_M methodm(y) {t }}

H ; E[x .m(v)]⇝ H , x ′ 7→ ι, y′ 7→ v ; E[t [self = x ′][y = y′]]

(R-CastLoc)

H (ι) = K obj {_ _}

H ; E[(K ) ι]⇝ H ; E[ι]

(R-Spawn)

ι, i , j fresh x < dom(H )
H ′ = H , x 7→ ι, ι 7→ chan {i , �}

H ; E[spawn (x ) {t }]⇝ H ′; E[ι] t j

(R-Recv)

H (ι) = chan {i , ι′ }
H ′ = H [ι 7→ chan {i , �}]

H ; E[ ← ι]⇝ H ′; E[ι′]

(R-SendBlock)

H (ι) = chan {_, �}
i fresh H ′ = H [ι 7→ chan {i , v }]

H ; E[ι ← v]⇝ H ′; E[■i ι]

(R-SendUnblock)

H (ι) = chan {i′, v }
v = � ∨ i , i′

H ; E[■i ι]⇝ H ; E[ι]

(R-Copy)

iso , K H (x ) = ι′ localOwner(H , i , ι′)
OkDup(H , K , H (x )) = (H ′, ι)

H ; E[K copy x ]i ⇝ H ′; E[ι]i

Figure 8. Runtime semantics

substituted for a fresh variable bound to the location of x
and the singular argument substituted for a fresh variable

bound to v (R-Call).

A new thread is introduced by a spawn operator which in-

troduces a new channel connecting the spawned thread with

its “parent” (R-Spawn). Rules (R-SendBlock), (R-SendUnblock)

and (R-Recv) handle sending and receiving values on a chan-

nel. Sending on a channel ι blocks until the channel is empty,

and subsequently blocks the sending thread until the value

has been received on the other side. Reading on a channel

blocks until there is a value that can be retrieved.

Casting an object (E-CastLoc) checks that the object has

the specified capability, throwing a permission error, other-

wise. The function R-Copy deep copies the object pointed by

ι, returning a heap that contains the copy of the object graph
with capability K and a fresh location that points to the ob-

ject copied.
9
The helper functions used above are defined

thus:

(RefCheck)

H (ι) = K ′ obj {_ _} K ≤ K ′

OkRef(H , K , ι)

(Helper-LocalOwner)

isLocal(H , v) ⇒ isOwner(H , i , v)

localOwner(H , i , v)

For simplicity, we have gathered some rules that trap ca-

pability errors at run-time in Fig. 9. Common errors when

accessing non-existent fields andmethods throw a ErrN error

(e.g., E-NoSuchField). Accessing values which are absent

due to a destructive read yields a ErrA (e.g., E-Consume).

Assigning an illegal value to a field is not allowed (e.g., E-

AliasIso and E-IsoField). Casts to the wrong capability re-

duce to ErrC . (Remaining rules in Appendix A in [32].)

9
The helper function OkDup(H , K , v) is a standard deep-copying opera-

tion. [16, 50]

5.2 Well-Formedness
We define the environment (also used as store typing [60]) as

Γ ::= ϵ | Γ, x : K | Γ, ι : K , where ϵ represents the empty en-

vironment, and x : K and ι : K mean variable x and location ι
have capability K . Well-formedness guarantee that the heap

is well-formed w.r.t. object capability (and its fields) and that

variables are not duplicated when introduced, but they do not

statically forbid violation of object capabilities (which will

throw a permission run-time error). Objects’ thread-locality

and proper isolation (for objects with local and isolated capa-

bilities respectively) fall out of well-formedness and appear

in [32].

5.3 Properties of Well-formed Programs
We highlight the properties satisfied by well-formed pro-

grams (proofs in [32]):

• Progress and Preservation (Theorems 5.1 and 5.2). This

means that if a well-formed program is not finished

(empty state), is not an error (normal, absent, permis-

sion, or cast error), or is not in a deadlock state (ter-

minal configuration), then it can take a reduction step

until it ends in a terminal configuration state and the

result of each reduction step is well-formed.

• Data-Race Freedom (Theorem 5.5). Programs without

unsafe objects are data-race free by construction.

• Dynamic Gradual Guarantee (Theorem 5.6). Adapta-

tion of the gradual guarantee [67, 68] stating capabili-

ties do not affect the run-time semantics, modulo casts

and capability errors. Essentially, if an unsafe program

is well-formed and takes a reduction step, the same

program with capability annotations either reduces to



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

(E-NoSuchField)

H (x .f ) = ⊥

H ; E[x .f ]⇝ H ;ErrN

(E-Consume)

H (x ) = ⊤

H ; E[consume x ]⇝ H ;ErrA

(E-AliasIso)

H (x ) = ι
isIso(H , ι)

H ; E[x ]⇝ H ;ErrP

(E-IsoField)

H (x ) = ι′ H (x .f ) = ι
localOwner(H , i , ι′) isIso(H , ι)

H ; E[x .f ]i ⇝ H ;ErrP

(E-CastError)

H (ι) = K ′ obj {_ _}
K ′ , K

H ; E[(K ) ι]⇝ H ;ErrC

Figure 9. Expression rules producing errors. To reduce clutter, we write H (x . f ) = v when H (x) = ι ∧H (ι) = _ obj {F _} and
f = v ∈ F . (Remaining rules in Appendix A in [32].)

the same run-time configuration (modulo safe erasure,

Definition B.11 in [32]) or throws an error due to a

cast or capability violation.

Programs start in an initial well-formed configuration ϵ ; t
(Definition B.1 in [32], and reduce to new configurations.

Progress (Theorem 5.1) guarantees that a well-formed con-

figuration reduces to a new configuration, or it is terminal

(Definition B2 in [32]). From Preservation (Theorem 5.2), a

reduction step always leads to a well-formed configuration.

Terminal configurations are either finished programs, errors

(with T Err ≡ Err from equivalence rules on Page 10), or a

deadlock configuration (Definition B.3 in [32]). A deadlock

configuration happens when all threads are either waiting

on a receive or on a send operation.

Theorem 5.1 (Progress). A well-formed configuration Γ ⊢

H ;T is either a terminal configuration or H ;T ⇝ H ′;T ′.

Theorem 5.2 (Preservation). If Γ ⊢ H ; t T is a well-formed

configuration, and H ; t T ⇝ H ′;T ′ T then, there exists a Γ′

s.t. Γ′ ⊇ Γ and Γ′ ⊢ H ′;T ′ T

Corollary 5.3 (Thread-Affinity of Thread-Local Fields). Im-

plied by Preservation, a thread local object with owner i cannot
contain a thread local object with owner j, where i , j. The
only way a local object can reference another local object of a

different owner is via field assignment (R-FieldAssign). But R-

FieldAssign checks that target and source share owners. Thus,

thread local objects can only reference thread local objects of

the same owner.

Definition 5.4 (Data Race). Informally, a data race is de-

fined as two threads accessing (write-write or read-write)

the same field without any interleaving synchronisation. In

our setting, this translates to two accesses to the same field of

an object o in threads i and j without an interleaving explicit

transfer of o from i to j . Thus, a data race in Dalarna requires

the ability of a mutable object to be referenced from two

threads at the same time (formal definition in [32]).

Theorem 5.5 states that Dalarna is data race-free modulo

unsafe objects. Objects that use safe capabilities cannot in-

troduce a data race; unsafe objects may introduce data races.

Theorem 5.5 (Dalarna is Data-Race Free Modulo Unsafe

Objects). All data races directly or indirectly involve an unsafe

object. A data race is defined as a read/write or write/write

access to an object by different threads without interleaving

synchronisation (In our formalism, this means an interleaving

transfer of an object to another thread; formal proof in [32]).

We now proceed to sketch the proof of data-race freedom for

safe objects by showing that it is not possible for a mutable

safe object to be aliased from two different threads at the

same time. We refer to l , i , j , r1 and r2 from Definition 5.4 for

clarity.

Let us examine the implications of l having any of the

three safe capabilities (and ignore unsafe objects for now).

1. l is immutable. By E-BadFieldAssign, attempts to

write fields of an immutable object will err. Thus, if

l is immutable, then R will contain an error, which it

did not by assumption.

2. l is local. By R-Field and R-FieldAssign, attempts

to write a field of a local from outside of its creating

thread will err. Thus, if l is local, then R will contain an

error (because i , j), which it did not by assumption.

3. l is isolated. Fields of isolated objects can be read or

written freely. Thus, we must show that l can be ac-

cessible in two threads at the same time. In the initial

heap, no objects exist that is shared across threads

and our only way to share objects across threads is

by sending them on a channel. An isolated l can be

sent on a channel. However, this requires that l is con-
sumed, meaning it will no longer be accessible by the

sender. To avoid the consumption, we could store l in
a field of an object, and then transfer the object. Such

objects, would have to be immutable or local. However,

by R-FieldAssign, immutable or local objects cannot

contain isolated objects.

Thus, we cannot create a situation where l is in both

r1 and r2 without any interleaving send.

A program that uses unsafe objects may use these to store

local and isolated objects. Thus, an unsafe object u aliased

across threads could store a local or isolated l in u . f (see 3.

above). This would allow threads i and j to do u . f .д. If l is
local, unless i = j, at least one of the accesses will err (or
both if neither i nor j is the creating thread of l , see 2. above).
If l is isolated, u . f .д will err by E-IsoField. Thus, even in the

presence of unsafe objects, safe objects will not participate

in data races.

Progress and preservation guarantee the absence of untrapped

errors and Theorem 5.5 shows that all data races can be

blamed on unsafe objects. Next, we show that capability an-

notations do not affect the run-time semantics, modulo cast



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

or capability violations which trap operations that if allowed

could lead to a data race. We show this in the Dynamic Grad-

ual Guarantee theorem (Theorem 5.6, adapted from [68]).

We unpack this theorem before stating it formally. Let P be a

well-formed program, and S its “stripped equivalent”, where

all safe capabilities have been erased (and thus replaced with

unsafe). Below, “reduces” denotes a single reduction step.

1. Thewell-formedness of S follows from thewell-formedness

of P , as an unsafe object can reference any object (Def-

inition B.11 in [32]).

2. If P reduces to a non-error configuration, S reduces

to the same configuration and the same heap (mod-

ulo heap capability erasure); in case P throws an er-

ror caused by absent values or normal errors, S will

throw the same error. The two evaluations only di-

verge if P throws a permission error in a dynamic

check – this will never happen in S because it does not

have any safe capabilities. (See Lemma B.27 in [32] e.g.,

E-BadFieldAssign or E-BadInstantiation among

others.)

3. If S reduces to an error configuration, P will reduce

to the same error configuration. If S reduces to a non-

error configuration, P will either reduce to the same

configuration (modulo capability stripping), or throw

a capability or permission error.

Theorem 5.6 (Dynamic Gradual Guarantee). Let H ; t T0 be

a configuration and Γ a store type such that Γ ⊢ H ; t T0. Let
e
be a function that replaces safe capabilities with unsafe in

heaps, terms, etc (Definition B.11 in [32]). Then:

1. Γe ⊢ (H ; t T0)
e
.

2. a. If H ; t T0 ⇝ H ′;T1 T0 and T1 , Err then,

(H ; t T0)
e ⇝ (H ′;T1 T0)

e
.

b. If H ; t T0 ⇝ H ′;T1 T0 and T1 = ErrA ∨ ErrN then,

(H ; t T )e ⇝ H ′′;T1 T0
3. a. If (H ; t T0)

e ⇝ (H ′; Err T0)
e
then,

H ; t T0 ⇝ H ′; Err T0
b. If (H ; t T0)

e ⇝ (H ′;T T0)
e
and T , Err then,

H ; t T0 ⇝ H ′;T ′ T0 and T ′ = ErrP ∨ ErrC ∨T .

The Dynamic Gradual Guarantee (Theorem 5.6) uses a

single step reduction to guarantee that the capabilities are

semantics preserving, modulo permission and cast errors.

We extend the Dynamic Gradual Guarantee to account for

multi-step reductions, starting from an initial configuration

until reaching a terminal configuration, i.e., ϵ ; P ⇝∗ H ;C . To
remove non-determinism of program reductions, we define

the trace of a program as a list of pairs that contain the reduc-

tion step and the thread id on which the reduction happens.

We extend the reduction relation to account for the trace,

named the replay reduction relation, which is the standard

reduction relation except that it deterministically applies

the expected reduction step on the expected thread id ([32],

Definitions B.5 to B.7 and Theorem B.28). The basic idea is

to reduce a safe program to a terminal configuration, which

produces a trace. We use this trace to replay the reductions

on the capability stripped (unsafe) program (and vice versa),

showing two programs reduce to the same terminal config-

uration modulo cast errors and permission errors. Since it

obscures some cases where the identical step is taken, we

show the single-step theorem in the paper which highlights

these cases.

6 Related Work
The Dala capability model (immutables < isolates < thread-

locals) carefully selects a number of well-known concepts

from the literature [16, 19, 40, 48, 55, 73]. Dala’s key contri-

bution here is the careful combination: what we have left

out is at least as important as the features we have included.

Given that an actor is essentially a thread plus thread-local

storage [25], our distinctions are similar to many object-actor

hybrid systems [22, 27, 36, 44, 45, 65], although, crucially,

we follow Singularity [47] by incorporating isolates for fast

transfers. Similarly, there are many more flexible models for

distinguishing between read-only and read-write objects:

we adopt “deep immutability” for its clear conceptual model

Glacier [21]. While there are certainly more complicated

models of permissions and capabilities for data-race freedom

(e.g., [12, 16, 19, 75] and many others), we consider our cho-

sen set of concepts a “sweet spot” in the balance between

expressivity and complexity.

6.1 Capabilities and Ownership
Dala is also heavily influenced by static capability-based

programming languages [8, 12, 18, 19, 35]. Capability-based

programming languages require all programs to be fully

annotated with capabilities, and these annotations guarantee

data-race freedom, with erasure semantics. In contrast, our

approach begins with a dynamic language that allows data

race and data race-free programs to interact, andwemaintain

data race-freedom for programs with safe capabilities.

Sergey and Clarke [66] add gradual ownership to a static

language, introducing notions of parametric ownership and

inserting casts when needed; they prove soundness and com-

mon ownership invariants. Our work has similarities in that

isolated objects can be seen as owners-as-dominators, and

our local objects have threads as owners. Dala differs in that

it is a dynamic, concurrent language, and we prove common

invariants and data race-freedom for safe objects.

HJp [70] enforces safe sharing of objects using a permission-

based gradual typing, which inserts run-time checks when

necessary. Objects are either in shared-read permission, which

allows reading from multiple threads but no mutation, or

read-write permission, allows any mutation and aliasing but

no sharing. It also introduces storable permissions which al-

lows a permission to refer to a tree of objects. Our approach

uses capabilities at run-time; imm capabilities are similar to



Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

HJp shared-read and read-write permissions are similar to

local. In addition, Dala also has the concept of iso which

can move across threads but do not allow any aliasing.

Roberts et al. [61] (and recently [56]) showed that run-time

gradual type checks could have minimal or no performance

impact on a suitable virtual machine, despite what is naively

much extra checking for partially-typed programs. We chose

to extend their Moth virtual machine for our dynamically-

checked implementation to take advantage of their work.

6.2 Capabilities In The Wild
Castegren’s et al work [12] seems to be the first one where

reference capabilities are orthogonal to the concurrency

model i.e., the reference capabilities seem applicable to mul-

tiple concurrency models. Their capabilities have been for-

malised using fork-join style but their implementation uses

active objects [8]. The implementation of Gordon’s et al ref-

erence immutability work closely follows the formal seman-

tics; because their reference permissions apply transitively

to fields of the object, it is not clear whether the model is

general enough to be applicable to different concurrency

models, e.g., actor or tuplespace model [24, 34]. Boyland et

al’s work [5] can encode 8 object capabilities to express dif-

ferent invariants and they argue that these can be used in

concurrent programs with no run-time cost, when programs

are fully typed. We believe the capability system is expres-

sive enough to work on different concurrency models, but

it is not clear whether their capabilities enforce data race

freedom. In languages such as E [54], AmbientTalk [22], and

Newspeak [6] references (far and near) represent object ca-

pabilities [28] and use a vat-based concurrency model. In

contrast, our work is simple and uses 3 capabilities, allows

interoperation between safe and “racy” programs and (as far

as we know) it is the first one to use reference capabilities in

a dynamic language where the capabilities are orthogonal

to the concurrency model.

6.3 Race Detectors
Although our capability checks guarantee data-race freedom,

they are different to the checks that a data-race detector

might employ [64]. These checks are also in some sense

“eager” or may cause false positives. For example, a program

that effectively transfers a mutable object o between two

threads will execute without errors if o is isolated, but not if
it is local and the non-owning thread dereferences it. This

is a somewhat pragmatic choice, but guided by our desire

to make our capabilities a tool for programmers to capture

their intent. Thus, we expect that a local object is explicitly

demarcated local (at creation time) and not isolated for a

reason. Thus, Dala helps programmers state their intentions

and check that the programs they write conform to said

intentions. This is different from a data race detector which

may only fire if a data race occurs (which may happen on

some runs but not others of the same program).

7 Discussion and Future Work
Our claim of efficiency rests on absence of deep copying and

turning local accesses into asynchronous operations. That

said, our capabilities incur a cost on (most) accesses to objects

– e.g., on writes to fields, etc. To remove most of this cost

will require self-optimising run-times [71] and techniques

similar to Grace’s transient checks [61] to reduce the number

of checks needed to satisfy the capability invariants.

Adding gradual capabilities at the type level will allow

most checks to be removed [56, 61], but more importantly

help programmers document the behaviour of code. Notably

this addition will not need escape hatches due to inflexible

types as programmers can fall-back to dynamic checks which

are equally safe.

In this paper, the Dala capabilities only constrain heap

structures. Nothing prevents a stack variable in an immutable

object to point to an unsafe object. To reason about data-

race freedom of a method call on a safe object, we need

to consider the methods arguments’ capabilities. Extending

the structural constraints to stack variables is an interesting

point in the design space: if immutable objects can only “see”

other immutable objects, method calls on immutables are

guaranteed to be side-effect free modulo allocation and GC.

For isos, side-effects are not possible, but preexisting objects

may be updated in place. Finally, local objects would only

observe local objects belonging to the same thread (which is

probably very desirable), and permit side-effects visible in

the current thread only. Such a design can reduce the number

of checks (e.g., all checks of thread-ownership happen only

when calling a local method in an unsafe context).

The Dala design is both simple and simplistic. Additional

expressivity might be gained for example by adding a no-

tion of ownership, or borrowing. How to compare complex-

ity of different capability systems is not clear. For example,

let us briefly compare the number of rules and concepts in

formalisms (on purpose in a footnote). Dala: 32 run-time

rules (omitting helper predicates); 30 well-formed rules. To-

tal: 62 rules. Encore’s type system [12]: 73 rules for well-

formed declaration and configurations, environment, type

equivalence and expression typing; 40 reduction rules. To-

tal: 113 rules. Pony [51]: 3 Table/Matrix with viewpoint-

adaptation matrix, safe-to-write and capability constraints; 7

definitions for Restricted syntaxes of types and bounds; 16 re-

duction rules; 10 typing rules; 13 rules for reduction of types

and bounds with a partial reification; 38 rules for inheritance,

nominal, structural and bound inheritance, capability and

reified subtyping, bound compliance, sub-bound compliance,

method subtyping; 23 rules for safe-to-write, sendable types,

reduction of types and translation of expressions Total: 110

rules.



Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

8 Conclusion
A data race is a fundamental, low-level aspect of a program

which is not tied to the intended semantics of a particular ap-

plication. While many race conditions stem from data-races,

data-race freedom does not mean absence of race conditions.

Data-race freedom is however still important: removing them

removes many race conditions and moreover makes a pro-

gram’s semantics independent on the idiosyncrasies of a

particular (weak) memory model. In the case of program-

ming languages like C and C++, data-races are examples

undefined behaviour. The Dala capabilities guarantee ab-

sence of data races in safe objects by imposing restrictions

on all code that interacts with these objects. Safe and unsafe

objects can co-exist and the presence of the latter does not

compromise the guarantees of the former.

Dala helps programmers structure their programs with

capabilities including immutable, isolated, and thread-local.

We support the Dala design with a formal model, clear and

proven properties w.r.t. data-race freedom and semantics

preservation when capabilities are added to a program.

We provide Daddala (Section 6 in [32]), an early proof-of-

concept prototype implementationwhich is available as open

source.
10
Based on this last experience, we believe that our

model can provide opt-in data-race safety to programmers

on top of existing languages, with relatively little implemen-

tation difficulty and overhead.

References
[1] [n.d.]. Akka Documentation. Actor Best Practices. https://doc.akka.io/

docs/akka/current/general/actor-systems.html#actor-best-practices. Accessed

August 26, 2020.

[2] Joe Armstrong, Robert Virding, and Mike Williams. 1993. Concurrent

programming in ERLANG. Prentice Hall.

[3] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.

2012. Grace: the absence of (inessential) difficulty. In ACM Symposium

on New Ideas in Programming and Reflections on Software, Onward!

2012, part of SPLASH ’12, Tucson, AZ, USA, October 21-26, 2012, Gary T.

Leavens and Jonathan Edwards (Eds.). ACM, 85–98. https://doi.org/10.

1145/2384592.2384601

[4] John Boyland. 2001. Alias burying: Unique variables without de-

structive reads. Softw. Pract. Exp. 31, 6 (2001), 533–553. https:

//doi.org/10.1002/spe.370

[5] John Boyland, James Noble, and William Retert. 2001. Capabilities for

Sharing: A Generalisation of Uniqueness and Read-Only. In ECOOP

2001 - Object-Oriented Programming, 15th European Conference, Bu-

dapest, Hungary, June 18-22, 2001, Proceedings (Lecture Notes in Com-

puter Science, Vol. 2072), Jørgen Lindskov Knudsen (Ed.). Springer, 2–27.

https://doi.org/10.1007/3-540-45337-7_2

[6] Gilad Bracha. 2017. Newspeak programming language draft specification

version 0.1. Technical Report. Technical report, Ministry of Truth.

[7] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William

Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak,

See [29], 405–428. https://doi.org/10.1007/978-3-642-14107-2_20

[8] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-

Reyes, Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias

Wrigstad, and Albert Mingkun Yang. 2015. Parallel Objects for Multi-

cores: A Glimpse at the Parallel Language Encore. In Formal Methods

10
https://github.com/gracelang/moth-SOMns/tree/daddala

for Multicore Programming - 15th International School on Formal Meth-

ods for the Design of Computer, Communication, and Software Systems,

SFM 2015, Bertinoro, Italy, June 15-19, 2015, Advanced Lectures (Lecture

Notes in Computer Science, Vol. 9104), Marco Bernardo and Einar Broch

Johnsen (Eds.). Springer, 1–56. https://doi.org/10.1007/978-3-319-18941-

3_1

[9] Denis Caromel, Christian Delbé, Alexandre Costanzo, and Mario Ley-

ton. 2006. ProActive: an Integrated platform for programming and

running applications on Grids and P2P systems. Computational Meth-

ods in Science and Technology 12 (01 2006). https://doi.org/10.12921/cmst.

2006.12.01.69-77

[10] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. 2009. Asyn-

chronous sequential processes. Inf. Comput. 207, 4 (2009), 459–495.

https://doi.org/10.1016/j.ic.2008.12.004

[11] Elias Castegren, Joel Wallin, and Tobias Wrigstad. 2018. Bestow

and atomic: Concurrent programming using isolation, delegation and

grouping. Journal of Logical and Algebraic Methods in Programming

100 (2018), 130 – 151. https://doi.org/10.1016/j.jlamp.2018.06.007

[12] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities

for Concurrency Control. In 30th European Conference on Object-

Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy

(LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 5:1–5:26. https:

//doi.org/10.4230/LIPIcs.ECOOP.2016.5

[13] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2014.

CAF - the C++ Actor Framework for Scalable and Resource-Efficient

Applications. In Proceedings of the 4th International Workshop on Pro-

gramming based on Actors Agents & Decentralized Control, AGERE!

2014, Portland, OR, USA, October 20, 2014, Elisa Gonzalez Boix, Philipp

Haller, Alessandro Ricci, and Carlos Varela (Eds.). ACM, 15–28. https:

//doi.org/10.1145/2687357.2687363

[14] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013.

Ownership Types: A Survey. In Aliasing in Object-Oriented Program-

ming. Types, Analysis and Verification, Dave Clarke, James Noble, and

Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850.

Springer, 15–58. https://doi.org/10.1007/978-3-642-36946-9_3

[15] Dave Clarke and TobiasWrigstad. 2003. External Uniqueness Is Unique

Enough. In ECOOP 2003 - Object-Oriented Programming, 17th European

Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings (Lecture

Notes in Computer Science, Vol. 2743), Luca Cardelli (Ed.). Springer,

176–200. https://doi.org/10.1007/978-3-540-45070-2_9

[16] Dave Clarke, TobiasWrigstad, Johan Östlund, and Einar Broch Johnsen.

2008. Minimal Ownership for Active Objects. In Programming Lan-

guages and Systems, 6th Asian Symposium, APLAS 2008, Bangalore,

India, December 9-11, 2008. Proceedings (Lecture Notes in Computer

Science, Vol. 5356), G. Ramalingam (Ed.). Springer, 139–154. https:

//doi.org/10.1007/978-3-540-89330-1_11

[17] David G. Clarke and Sophia Drossopoulou. 2002. Ownership, encapsu-

lation and the disjointness of type and effect. In Proceedings of the 2002

ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications, OOPSLA 2002, Seattle, Washington, USA,

November 4-8, 2002, Mamdouh Ibrahim and Satoshi Matsuoka (Eds.).

ACM, 292–310. https://doi.org/10.1145/582419.582447

[18] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent

garbage collection of actors on many-core machines. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA 2013, part

of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L.

Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 553–

570. https://doi.org/10.1145/2509136.2509557

[19] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy

McNeil. 2015. Deny capabilities for safe, fast actors. In Proceedings of

the 5th International Workshop on Programming Based on Actors, Agents,

and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October

https://doc.akka.io/docs/akka/current/general/actor-systems.html#actor-best-practices
https://doc.akka.io/docs/akka/current/general/actor-systems.html#actor-best-practices
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1002/spe.370
https://doi.org/10.1002/spe.370
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.12921/cmst.2006.12.01.69-77
https://doi.org/10.12921/cmst.2006.12.01.69-77
https://doi.org/10.1016/j.ic.2008.12.004
https://doi.org/10.1016/j.jlamp.2018.06.007
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-540-45070-2_9
https://doi.org/10.1007/978-3-540-89330-1_11
https://doi.org/10.1007/978-3-540-89330-1_11
https://doi.org/10.1145/582419.582447
https://doi.org/10.1145/2509136.2509557


Onward! ’21, October 20–22, 2021, Chicago, IL, USA K. Fernandez-Reyes, I. Gariano, J. Noble, E. Greenwood-Thessman, M. Homer, and T. Wrigstad

26, 2015, Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and

Carlos Varela (Eds.). ACM, 1–12. https://doi.org/10.1145/2824815.2824816

[20] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun

Yang, Tobias Wrigstad, and Jan Vitek. 2017. Orca: GC and type system

co-design for actor languages. Proc. ACM Program. Lang. 1, OOPSLA

(2017), 72:1–72:28. https://doi.org/10.1145/3133896

[21] Michael J. Coblenz, Whitney Nelson, Jonathan Aldrich, Brad A. Myers,

and Joshua Sunshine. 2017. Glacier: transitive class immutability for

Java. In Proceedings of the 39th International Conference on Software

Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE

/ ACM, 496–506. https://doi.org/10.1109/ICSE.2017.52

[22] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, An-

doni Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De

Meuter. 2014. AmbientTalk: programming responsive mobile peer-

to-peer applications with actors. Comput. Lang. Syst. Struct. 40, 3-4

(2014), 112–136. https://doi.org/10.1016/j.cl.2014.05.002

[23] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. 2009.

Linguistic symbiosis between event loop actors and threads. Comput.

Lang. Syst. Struct. 35, 1 (2009), 80–98. https://doi.org/10.1016/j.cl.2008.06.

005

[24] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio,

Justine Rochas, Crystal Chang Din, Einar Broch Johnsen, Marjan Sir-

jani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun

Yang. 2017. A Survey of Active Object Languages. ACM Comput. Surv.

50, 5 (2017), 76:1–76:39. https://doi.org/10.1145/3122848

[25] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem,

and Wolfgang De Meuter. 2015. Partitioned Global Address Space

Languages. Comput. Surveys 47, 4, Article 62 (June 2015), 27 pages.

[26] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De

Meuter. 2006. Ambient-Oriented Programming in AmbientTalk. In

ECOOP. 230–254.

[27] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,

and Wolfgang De Meuter. 2006. Ambient-Oriented Programming

in AmbientTalk. In ECOOP 2006 - Object-Oriented Programming, 20th

European Conference, Nantes, France, July 3-7, 2006, Proceedings (Lecture

Notes in Computer Science, Vol. 4067), Dave Thomas (Ed.). Springer,

230–254. https://doi.org/10.1007/11785477_16

[28] Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for

multiprogrammed computations. Commun. ACM 9, 3 (1966), 143–155.

https://doi.org/10.1145/365230.365252

[29] Theo D’Hondt (Ed.). 2010. ECOOP 2010 - Object-Oriented Program-

ming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010.

Proceedings. Lecture Notes in Computer Science, Vol. 6183. Springer.

https://doi.org/10.1007/978-3-642-14107-2

[30] Werner Dietl, Sophia Drossopoulou, and Peter Müller. 2007. Generic

Universe Types. In ECOOP 2007 - Object-Oriented Programming, 21st

European Conference, Berlin, Germany, July 30 - August 3, 2007, Pro-

ceedings (Lecture Notes in Computer Science, Vol. 4609), Erik Ernst (Ed.).

Springer, 28–53. https://doi.org/10.1007/978-3-540-73589-2_3

[31] Darach Ennis. 2005. My Little Pony. At CodeMesh 2015. https://cdn.

rawgit.com/darach/my_little_pony/master/my-little-pony.html.

[32] Kiko Fernandez-Reyes, Isaac Oscar Gariano, James Noble, Erin

Greenwood-Thessman, Michael Homer, and Tobias Wrigstad. 2021.

Dala: A Simple Capability-Based Dynamic Language Design For Data

Race-Freedom. arXiv:2109.07541 [cs.PL]

[33] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.

1993. The Essence of Compiling with Continuations. In Proceedings

of the ACM SIGPLAN’93 Conference on Programming Language Design

and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25,

1993, Robert Cartwright (Ed.). ACM, 237–247. https://doi.org/10.1145/

155090.155113

[34] David Gelernter. 1985. Generative Communication in Linda. ACM

Trans. Program. Lang. Syst. 7, 1 (1985), 80–112. https://doi.org/10.1145/

2363.2433

[35] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,

and Joe Duffy. 2012. Uniqueness and reference immutability for safe

parallelism. In Proceedings of the 27th Annual ACM SIGPLANConference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,

2012, Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM, 21–40.

https://doi.org/10.1145/2384616.2384619

[36] Olivier Gruber and Fabienne Boyer. 2013. Ownership-Based Isolation

for Concurrent Actors onMulti-coreMachines. In ECOOP 2013 - Object-

Oriented Programming - 27th European Conference, Montpellier, France,

July 1-5, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7920),

Giuseppe Castagna (Ed.). Springer, 281–301. https://doi.org/10.1007/978-

3-642-39038-8_12

[37] Philipp Haller and Alexander Loiko. 2016. LaCasa: lightweight

affinity and object capabilities in Scala. In Proceedings of the 2016

ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2016, part of

SPLASH 2016, Amsterdam, The Netherlands, October 30 - November

4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 272–291.

https://doi.org/10.1145/2983990.2984042

[38] Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness

and Borrowing, See [29], 354–378. https://doi.org/10.1007/978-3-642-

14107-2_17

[39] Douglas E. Harms and Bruce W. Weide. 1991. Copying and Swapping:

Influences on the Design of Reusable Software Components. IEEE

Trans. Softw. Eng. 17, 5 (May 1991), 424–435. https://doi.org/10.1109/32.

90445

[40] John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented

Languages. In Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA’91), Sixth Annual Conference,

Phoenix, Arizona, USA, October 6-11, 1991, Proceedings, Andreas

Paepcke (Ed.). ACM, 271–285. https://doi.org/10.1145/117954.117975

[41] Michael Homer, Timothy Jones, James Noble, Kim B Bruce, and An-

drew P Black. 2014. Graceful dialects. In ECOOP (LNCS, Vol. 8586),

Richard Jones (Ed.). Springer, 131–156.

[42] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and

Martin Steffen. 2012. ABS: A Core Language for Abstract Behavioral

Specification. In Formal Methods for Components and Objects, Bern-

hard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 142–164.

[43] Steve Klabnik and Carol Nichols. 2019. The Rust Programming Lan-

guage (Covers Rust 2018). No Starch Press.

[44] Joeri De Koster, Stefan Marr, Tom Van Cutsem, and Theo D’Hondt.

2016. Domains: Sharing state in the communicating event-loop actor

model. Comput. Lang. Syst. Struct. 45 (2016), 132–160.

[45] Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem.

2015. Domains: Safe sharing among actors. Sci. Comput. Program. 98

(2015), 140–158.

[46] Neel Krishnaswami and Jonathan Aldrich. 2005. Permission-based

ownership: encapsulating state in higher-order typed languages. In

PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation, Mary Hall (Ed.). Chicago,

IL, USA, 96–106.

[47] James Larus and Galen Hunt. 2010. The Singularity System. Commun.

ACM 53, 8 (Aug. 2010), 72–79. https://doi.org/10.1145/1787234.1787253

[48] Douglas Lea. 1999. Concurrent programming in Java. Second Edition:

Design Principles and Patterns (2nd ed.). Addison-Wesley Longman

Publishing Co., Inc., USA.

[49] Amit A. Levy,Michael P. Andersen, Bradford Campbell, David E. Culler,

Prabal Dutta, Branden Ghena, Philip Levis, and Pat Pannuto. 2015.

Ownership is theft: experiences building an embedded OS in Rust.

In Proceedings of the 8th Workshop on Programming Languages and

Operating Systems, PLOS 2015, Monterey, California, USA, October 4,

2015, Shan Lu (Ed.). ACM, 21–26. https://doi.org/10.1145/2818302.2818306

https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/3133896
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1016/j.cl.2014.05.002
https://doi.org/10.1016/j.cl.2008.06.005
https://doi.org/10.1016/j.cl.2008.06.005
https://doi.org/10.1145/3122848
https://doi.org/10.1007/11785477_16
https://doi.org/10.1145/365230.365252
https://doi.org/10.1007/978-3-642-14107-2
https://doi.org/10.1007/978-3-540-73589-2_3
https://cdn.rawgit.com/darach/my_little_pony/master/my-little-pony.html
https://cdn.rawgit.com/darach/my_little_pony/master/my-little-pony.html
https://arxiv.org/abs/2109.07541
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1007/978-3-642-39038-8_12
https://doi.org/10.1007/978-3-642-39038-8_12
https://doi.org/10.1145/2983990.2984042
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1109/32.90445
https://doi.org/10.1109/32.90445
https://doi.org/10.1145/117954.117975
https://doi.org/10.1145/1787234.1787253
https://doi.org/10.1145/2818302.2818306


Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom Onward! ’21, October 20–22, 2021, Chicago, IL, USA

[50] Paley Li, Nicholas Cameron, and James Noble. 2012. Sheep cloning

with ownership types. In FOOL 2012: 19th International Workshop on

Foundations of Object-Oriented Languages. Citeseer, 59.

[51] Paul Liétar. 2017. Formalizing Generics for Pony. Master’s thesis.

Imperial College London.

[52] Barbara Liskov and Liuba Shrira. 1988. Promises: Linguistic Support

for Efficient Asynchronous Procedure Calls in Distributed Systems.

In Proceedings of the ACM SIGPLAN’88 Conference on Programming

Language Design and Implementation (PLDI), Atlanta, Georgia, USA,

June 22-24, 1988, Richard L. Wexelblat (Ed.). ACM, 260–267. https:

//doi.org/10.1145/53990.54016

[53] Nicholas D. Matsakis and Felix S. Klock II. 2014. The Rust language. In

Proceedings of the 2014 ACM SIGAda annual conference on High integrity

language technology, HILT 2014, Portland, Oregon, USA, October 18-

21, 2014, Michael Feldman and S. Tucker Taft (Eds.). ACM, 103–104.

https://doi.org/10.1145/2663171.2663188

[54] Mark S. Miller. 2006. Robust Composition: Towards a Unified Approach to

Access Control and Concurrency Control. Ph.D. Dissertation. Baltimore,

Maryland.

[55] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified

Approach to Access Control and Concurrency Control. Ph.D. Dissertation.

Johns Hopkins University, Baltimore, Maryland, USA.

[56] Cameron Moy, Phúc C Nguyen, Sam Tobin-Hochstadt, and David

Van Horn. 2020. Corpse Reviver: Sound and Efficient Gradual Typing

via Contract Verification. arXiv preprint arXiv:2007.12630 (2020).

[57] James Noble, Andrew P Black, Kim B Bruce, Michael Homer, and

Timothy Jones. 2017. Grace’s Inheritance. Journal of Object Technology

16, 2 (2017).

[58] Nikolaos Papaspyrou and Konstantinos Sagonas. 2012. On Preserving

Term Sharing in the Erlang Virtual Machine. In Proceedings of the

Eleventh ACM SIGPLAN Workshop on Erlang Workshop (Copenhagen,

Denmark) (Erlang ’12). Association for Computing Machinery, New

York, NY, USA, 11–20. https://doi.org/10.1145/2364489.2364493

[59] Michael Papathomas. 1989. Concurrency issues in object-oriented

programming languages. Object Oriented Development (1989), 207–

245.

[60] Benjamin C. Pierce. 2002. Types and programming languages. MIT

Press.

[61] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019.

Transient Typechecks Are (Almost) Free. In 33rd European Conference

on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London,

United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:28. https://doi.org/10.

4230/LIPIcs.ECOOP.2019.5

[62] Venetia Laura Delano Robertson. 2013. Of ponies and men: My Little

Pony: Friendship is Magic and the Brony fandom. International Journal

of Cultural Studies (2013).

[63] Barry K. Rosen, Mark N.Wegman, and F. Kenneth Zadeck. 1988. Global

Value Numbers and Redundant Computations. In Conference Record of

the Fifteenth Annual ACM Symposium on Principles of Programming

Languages, San Diego, California, USA, January 10-13, 1988, Jeanne

Ferrante and P. Mager (Eds.). ACM Press, 12–27. https://doi.org/10.1145/

73560.73562

[64] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas E. Anderson. 1997. Eraser: A Dynamic Data Race Detector

for Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (1997),

391–411. https://doi.org/10.1145/265924.265927

[65] Jan Schäfer and Arnd Poetzsch-Heffter. 2010. JCoBox: Generalizing

Active Objects to Concurrent Components, See [29], 275–299. https:

//doi.org/10.1007/978-3-642-14107-2_13

[66] Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In Pro-

gramming Languages and Systems - 21st European Symposium on Pro-

gramming, ESOP 2012, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -

April 1, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7211),

Helmut Seidl (Ed.). Springer, 579–599. https://doi.org/10.1007/978-3-642-

28869-2_29

[67] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Func-

tional Languages. In IN SCHEME AND FUNCTIONAL PROGRAMMING

WORKSHOP. 81–92.

[68] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang

Boyland. 2015. Refined Criteria for Gradual Typing. In 1st Summit

on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015,

Asilomar, California, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav Bodík,

Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 274–293. https:

//doi.org/10.4230/LIPIcs.SNAPL.2015.274

[69] Tom Van Cutsem and Mark S. Miller. 2013. Trustworthy Prox-

ies: Virtualizing Objects with Invariants. In Proceedings of the 27th

European Conference on Object-Oriented Programming (Montpellier,

France) (ECOOP’13). Springer-Verlag, Berlin, Heidelberg, 154–178.

https://doi.org/10.1007/978-3-642-39038-8_7

[70] Edwin M. Westbrook, Jisheng Zhao, Zoran Budimlic, and Vivek Sarkar.

2012. Practical Permissions for Race-Free Parallelism. In ECOOP 2012

- Object-Oriented Programming - 26th European Conference, Beijing,

China, June 11-16, 2012. Proceedings (Lecture Notes in Computer Science,

Vol. 7313), James Noble (Ed.). Springer, 614–639. https://doi.org/10.1007/

978-3-642-31057-7_27

[71] Christian Wimmer and Thomas Würthinger. 2012. Truffle: a self-

optimizing runtime system. In Conference on Systems, Programming,

and Applications: Software for Humanity, SPLASH ’12, Tucson, AZ, USA,

October 21-25, 2012, Gary T. Leavens (Ed.). ACM, 13–14. https://doi.org/

10.1145/2384716.2384723

[72] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach

to Type Soundness. Inf. Comput. 115, 1 (1994), 38–94. https://doi.org/10.

1006/inco.1994.1093

[73] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek.

2009. Loci: Simple Thread-Locality for Java. In ECOOP 2009 - Object-

Oriented Programming, 23rd European Conference, Genoa, Italy, July

6-10, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5653),

Sophia Drossopoulou (Ed.). Springer, 445–469. https://doi.org/10.1007/

978-3-642-03013-0_21

[74] Derek Wyatt. 2013. Akka concurrency. Artima Incorporation.

[75] Yang Zhao and John Boyland. 2008. A Fundamental Permission Inter-

pretation for Ownership Types. In TASE. 65–72.

https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2364489.2364493
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/265924.265927
https://doi.org/10.1007/978-3-642-14107-2_13
https://doi.org/10.1007/978-3-642-14107-2_13
https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1007/978-3-642-39038-8_7
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-642-03013-0_21
https://doi.org/10.1007/978-3-642-03013-0_21

	Abstract
	1 Introduction
	2 Background: Perils of Concurrent Programming
	2.1 Balancing Safety, Complexity and Performance
	2.2 Safe One-Size-Fits-All Concurrency
	2.3 Safety May Beget Unsafety
	2.4 Summary

	3 An Overview of The Dala Model
	3.1 Simple Case Study: A Concurrent Hash Map

	4 How the Dala Model Addresses the Concurrent Problems in sec:motivation
	4.1 Balancing Safety, Complexity and Performance
	4.2 Safe One-Size-Fits-All Concurrency
	4.3 Safety Begetting Unsafety

	5 Formalising the Dala Capability and Concurrency Models
	5.1 Dynamic Semantics
	5.2 Well-Formedness
	5.3 Properties of Well-formed Programs

	6 Related Work
	6.1 Capabilities and Ownership
	6.2 Capabilities In The Wild
	6.3 Race Detectors

	7 Discussion and Future Work
	8 Conclusion
	References

