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Introduction

Meaning in the gradually typed world

A type assertion should be meaningful

What do expect this to mean in the context of gradual typing?

method foo(x : A) → B
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Introduction

Gradual typing is morally incorrect

The level of knowledge the system has can change behaviour

Morally correct behaviour:
I Raise an error when we know an assertion is not satisfied
I Place the blame on ill-typed code

I Know as much as possible
I Prevent interaction with objects which are known to be ill-typed
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Introduction

We’re all monsters now

Concession to the pragmatists: we’re not moral either

It is necessary that:
I Much more information is retained
I All type errors are fatal
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Background

Gradual typing

Typed and untyped worlds can interact
I Macro and micro interpretations of worlds

Runtime enforcement of type assertions
I Refinement of optional typing

Well-typed programs can’t be blamed
I Provides a standard for soundness
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Background

Languages
λ?

→ and Ob?
<: (Siek and Taha)

The Blame Calculus (Wadler and Findler)

Typed Racket (PLT, Tobin-Hochstadt et al.)

Reticulated Python (Vitousek et al.)

Thorn (Wrigstad et al.), SafeScript (Richards et al.), etc.

Grace
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Background

Semantics

Basic checking is easy in a simple nominal world

method foo(x : String) {}

foo(12) // Error: 12 does not satisfy the type String.
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Background

Semantics

Higher-order types cannot be conclusively checked

method foo(f : Function.from(Number) to(String)) {}

foo({ x → if (x ≥ 10) then { "big" } else { x } })
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Background

Structural types

Structural types are just sets of these function types
I We can check the functions exist, but not if they satisfy the type

let Bar = type { bar → Number }

method foo(x : Bar) → Number {
x.bar // Raises an error here...

}

// ... Blaming this call site
foo(object { method bar { "12" } })
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Background

Semantics

How do we remember to check these constraints?
I Transient: rewrite the code to check method calls
I Guarded: indirect reference through a first-class contract
I Monotonic: permanently insert the contract into the object

Each of these semantics has different behaviour
I Both spatial and temporal meanings differ between them
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Background

The Gradual Guarantee

Recent refinement of what it means to be ‘gradual’
I (Implied intent made explicit)

Type assertions don’t affect program behaviour
I Correct programs behave the same when any assertions are removed
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Semantic Differences

Meaning what we say

What does it mean when I say, “You must give me an A”

What does it mean when I say, “I will give you a B”
I (Given that assumptions may be invalidated)

method foo(x : A) → B {
e // Type-checked

}
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Semantic Differences

Requirements

“You must give me an A”:
I Transient: Must behave as A in the scope of the definition
I Guarded: Reference must behave as A
I Monotonic: Object must behave as A
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Semantic Differences

Guarantees

“I will give you a B”:
I Transient: If you gave me an A, you will get a B
I Guarded: Reference will behave as B (or blame the A)
I Monotonic: Object will behave as B (or blame the A)
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Semantic Differences

Saying what we mean

Transient semantics cannot perform blame

Monotonic presented as more performant than guarded
I Both are sound up to blame
I But which maps more closely to our desired (intuitive) meaning?
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Semantic Differences

Requirements

Guarded: My view of the object must behave as A
I It doesn’t matter if the object doesn’t actually satisfy A

Monotonic: The object must behave as A
I Interactions with the object anywhere in the program now perform

checks
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Semantic Differences

Transparent proxies
Guarded semantics wrap objects in transparent proxies

I Different views of the same object can have different behaviour

Consider when "untyped.rkt" defines y as an alias of x:

(define-type FooA (Instance (Class [foo (→ A)])))
(define-type FooB (Instance (Class [foo (→ B)])))
(require/typed "untyped.rkt" [x FooA] [y FooB])

(define (bar obj) (send obj foo))

(bar x) ; Fine: x satisfied FooA
(bar y) ; Type error
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Semantic Differences

Mutating objects
Monotonic semantics can blame unrelated code

def foo(f : Function(Int, Int)):
f(2)

def bar(f):
f(6)

def cap(x):
x if x < 5 else "Too big"

foo(cap) # Fine
bar(cap) # Type error, blaming call to foo
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Semantic Differences

Moral correctness

Which of these behaviours is more surprising?
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Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions

I Aliases of the same object ascribed different types
I Collapsing unions or generic types
I Calling methods: what they accept and return

Guarded and monotonic
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Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions
I Aliases of the same object ascribed different types
I Collapsing unions or generic types
I Calling methods: what they accept and return

Only after an assertion
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Type Information

Union collapsing

Information about unions of types must collapse

type { foo → A } ∪ type { foo → B } 6= type { foo → A ∪ B }

One will invalidate the other

x.foo // If this is not a B...
x.foo // ... returning a B must be a type error in the future
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Type Information

Future behaviour

Future behaviour can invalidate contracts

let Foo = type { foo → Number }

method id(x : Foo) → Foo { x }

var z := id(y)
z.foo // Returns a String: blame call to id

We know that y does not satisfy the type Foo
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Type Information

Past behaviour

Past behaviour should also invalidate contracts

let Foo = type { foo → Number }

method id(x : Foo) → Foo { x }

y.foo // Returns a String
var z := id(y) // Type error?

We should know that y does not satisfy the type Foo
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Fatal Errors

Catching exceptions considered harmful

Catching type errors leads to strange behaviour
I Invalidates the Gradual Guarantee
I Permits interacting with code known to be ill-typed

Practical implementations concerned with error compatibility
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Fatal Errors

Probing type annotations

method foo(x : String) {}

method fooTakesStrings → Boolean {
try {

foo(12)
return false

} catch { e : TypeError →
return true

}
}

if (fooTakesStrings) then { print(1) } else { print(2) }
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Fatal Errors

Using invalidated objects

Should we be allowed access to known ill-typed objects?

(require/typed "untyped.rkt"
[x (Instance (Class [foo (→ A)] [bar (→ B)]))])

(with-handlers
[exn:fail:contract? (λ (e)

)]
(send x foo)) ; Raises a type error if foo does not return A
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Fatal Errors

Using invalidated objects

Should we be allowed access to known ill-typed objects?

(require/typed "untyped.rkt"
[x (Instance (Class [foo (→ A)] [bar (→ B)]))])

(with-handlers
[exn:fail:contract? (λ (e)
; We can use x, even though we know that it is ill-typed
(send x bar)

)]
(send x foo))
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Fatal Errors

Using invalidated objects

What about in the monotonic semantics?

def foo(f : Function(A, B)) → B:
return f(a)

try:
foo(f) # f is permanently modified to ensure B when given A

except CastError:
f(a) # f fails its permanent contract: can we pass it A now?
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Correctness

Achieving perfection

Record everything
I Types of every value that methods accept and return

Respond to everything
I Check all relevant contracts whenever anything happens

Typed/untyped interaction is no longer a bottleneck
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Correctness

Achieving perfection

Do away with blame

Just travel back in time to the code which was at fault
I No more issues with try-catch, without requiring fatal errors
I Undoing dynamic typing (Benton)

Use flow analysis to propagate all possible assertions into the past

I (that is, just infer conservative types on all untyped code)
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Correctness

Moral correctness

Anything less makes me uncomfortable, so must be wrong
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