
Gradual typing is morally incorrect;
we’re all monsters now

Timothy Jones and Michael Homer

Victoria University of Wellington
{tim,mwh}@ecs.vuw.ac.nz

October 27, 2015



Introduction

Meaning in the gradually typed world

A type assertion should be meaningful

What do expect this to mean in the context of gradual typing?

method foo(x : A) → B

1



Introduction

Gradual typing is morally incorrect

The level of knowledge the system has can change behaviour

Morally correct behaviour:
I Raise an error when we know an assertion is not satisfied
I Place the blame on ill-typed code

I Know as much as possible
I Prevent interaction with objects which are known to be ill-typed

2



Introduction

Gradual typing is morally incorrect

The level of knowledge the system has can change behaviour

Morally correct behaviour:
I Raise an error when we know an assertion is not satisfied
I Place the blame on ill-typed code
I Know as much as possible

I Prevent interaction with objects which are known to be ill-typed

2



Introduction

Gradual typing is morally incorrect

The level of knowledge the system has can change behaviour

Morally correct behaviour:
I Raise an error when we know an assertion is not satisfied
I Place the blame on ill-typed code
I Know as much as possible
I Prevent interaction with objects which are known to be ill-typed

2



Introduction

We’re all monsters now

Concession to the pragmatists: we’re not moral either

It is necessary that:
I Much more information is retained
I All type errors are fatal

3



Background

Gradual typing

Typed and untyped worlds can interact
I Macro and micro interpretations of worlds

Runtime enforcement of type assertions
I Refinement of optional typing

Well-typed programs can’t be blamed
I Provides a standard for soundness

4



Background

Languages
λ?

→ and Ob?
<: (Siek and Taha)

The Blame Calculus (Wadler and Findler)

Typed Racket (PLT, Tobin-Hochstadt et al.)

Reticulated Python (Vitousek et al.)

Thorn (Wrigstad et al.), SafeScript (Richards et al.), etc.

Grace

5



Background

Languages
λ?

→ and Ob?
<: (Siek and Taha)

The Blame Calculus (Wadler and Findler)

Typed Racket (PLT, Tobin-Hochstadt et al.)

Reticulated Python (Vitousek et al.)

Thorn (Wrigstad et al.), SafeScript (Richards et al.), etc.

Grace
5



Background

Semantics

Basic checking is easy in a simple nominal world

method foo(x : String) {}

foo(12) // Error: 12 does not satisfy the type String.

6



Background

Semantics

Higher-order types cannot be conclusively checked

method foo(f : Function.from(Number) to(String)) {}

foo({ x → if (x ≥ 10) then { "big" } else { x } })

7



Background

Structural types

Structural types are just sets of these function types
I We can check the functions exist, but not if they satisfy the type

let Bar = type { bar → Number }

method foo(x : Bar) → Number {
x.bar // Raises an error here...

}

// ... Blaming this call site
foo(object { method bar { "12" } })

8



Background

Semantics

How do we remember to check these constraints?
I Transient: rewrite the code to check method calls
I Guarded: indirect reference through a first-class contract
I Monotonic: permanently insert the contract into the object

Each of these semantics has different behaviour
I Both spatial and temporal meanings differ between them

9



Background

Semantics

How do we remember to check these constraints?
I Transient: rewrite the code to check method calls
I Guarded: indirect reference through a first-class contract
I Monotonic: permanently insert the contract into the object

Each of these semantics has different behaviour
I Both spatial and temporal meanings differ between them

9



Background

The Gradual Guarantee

Recent refinement of what it means to be ‘gradual’
I (Implied intent made explicit)

Type assertions don’t affect program behaviour
I Correct programs behave the same when any assertions are removed

10



Semantic Differences

Meaning what we say

What does it mean when I say, “You must give me an A”

What does it mean when I say, “I will give you a B”
I (Given that assumptions may be invalidated)

method foo(x : A) → B {
e // Type-checked

}

11



Semantic Differences

Requirements

“You must give me an A”:
I Transient: Must behave as A in the scope of the definition
I Guarded: Reference must behave as A
I Monotonic: Object must behave as A

12



Semantic Differences

Guarantees

“I will give you a B”:
I Transient: If you gave me an A, you will get a B
I Guarded: Reference will behave as B (or blame the A)
I Monotonic: Object will behave as B (or blame the A)

13



Semantic Differences

Saying what we mean

Transient semantics cannot perform blame

Monotonic presented as more performant than guarded
I Both are sound up to blame
I But which maps more closely to our desired (intuitive) meaning?

14



Semantic Differences

Requirements

Guarded: My view of the object must behave as A
I It doesn’t matter if the object doesn’t actually satisfy A

Monotonic: The object must behave as A
I Interactions with the object anywhere in the program now perform

checks

15



Semantic Differences

Transparent proxies
Guarded semantics wrap objects in transparent proxies

I Different views of the same object can have different behaviour

Consider when "untyped.rkt" defines y as an alias of x:

(define-type FooA (Instance (Class [foo (→ A)])))
(define-type FooB (Instance (Class [foo (→ B)])))
(require/typed "untyped.rkt" [x FooA] [y FooB])

(define (bar obj) (send obj foo))

(bar x) ; Fine: x satisfied FooA
(bar y) ; Type error

16



Semantic Differences

Mutating objects
Monotonic semantics can blame unrelated code

def foo(f : Function(Int, Int)):
f(2)

def bar(f):
f(6)

def cap(x):
x if x < 5 else "Too big"

foo(cap) # Fine
bar(cap) # Type error, blaming call to foo

17



Semantic Differences

Moral correctness

Which of these behaviours is more surprising?

18



Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions

I Aliases of the same object ascribed different types
I Collapsing unions or generic types
I Calling methods: what they accept and return

Guarded and monotonic

19



Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions
I Aliases of the same object ascribed different types

I Collapsing unions or generic types
I Calling methods: what they accept and return

Monotonic only

19



Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions
I Aliases of the same object ascribed different types
I Collapsing unions or generic types

I Calling methods: what they accept and return

Keil and Theimann

19



Type Information

Discovering type information

Information about types can be discovered in many places
I Type assertions
I Aliases of the same object ascribed different types
I Collapsing unions or generic types
I Calling methods: what they accept and return

Only after an assertion

19



Type Information

Union collapsing

Information about unions of types must collapse

type { foo → A } ∪ type { foo → B } 6= type { foo → A ∪ B }

One will invalidate the other

x.foo // If this is not a B...
x.foo // ... returning a B must be a type error in the future

20



Type Information

Future behaviour

Future behaviour can invalidate contracts

let Foo = type { foo → Number }

method id(x : Foo) → Foo { x }

var z := id(y)
z.foo // Returns a String: blame call to id

We know that y does not satisfy the type Foo

21



Type Information

Past behaviour

Past behaviour should also invalidate contracts

let Foo = type { foo → Number }

method id(x : Foo) → Foo { x }

y.foo // Returns a String
var z := id(y) // Type error?

We should know that y does not satisfy the type Foo

22



Fatal Errors

Catching exceptions considered harmful

Catching type errors leads to strange behaviour
I Invalidates the Gradual Guarantee
I Permits interacting with code known to be ill-typed

Practical implementations concerned with error compatibility

23



Fatal Errors

Probing type annotations

method foo(x : String) {}

method fooTakesStrings → Boolean {
try {

foo(12)
return false

} catch { e : TypeError →
return true

}
}

if (fooTakesStrings) then { print(1) } else { print(2) }
24



Fatal Errors

Probing type annotations

method foo(x) {}

method fooTakesStrings → Boolean {
try {

foo(12)
return false

} catch { e : TypeError →
return true

}
}

if (fooTakesStrings) then { print(1) } else { print(2) }
24



Fatal Errors

Using invalidated objects

Should we be allowed access to known ill-typed objects?

(require/typed "untyped.rkt"
[x (Instance (Class [foo (→ A)] [bar (→ B)]))])

(with-handlers
[exn:fail:contract? (λ (e)

)]
(send x foo)) ; Raises a type error if foo does not return A

25



Fatal Errors

Using invalidated objects

Should we be allowed access to known ill-typed objects?

(require/typed "untyped.rkt"
[x (Instance (Class [foo (→ A)] [bar (→ B)]))])

(with-handlers
[exn:fail:contract? (λ (e)
; We can use x, even though we know that it is ill-typed
(send x bar)

)]
(send x foo))

25



Fatal Errors

Using invalidated objects

What about in the monotonic semantics?

def foo(f : Function(A, B)) → B:
return f(a)

try:
foo(f) # f is permanently modified to ensure B when given A

except CastError:
f(a) # f fails its permanent contract: can we pass it A now?

26



Correctness

Achieving perfection

Record everything
I Types of every value that methods accept and return

Respond to everything
I Check all relevant contracts whenever anything happens

Typed/untyped interaction is no longer a bottleneck

27



Correctness

Achieving perfection

Record everything
I Types of every value that methods accept and return

Respond to everything
I Check all relevant contracts whenever anything happens

Typed/untyped interaction is no longer a bottleneck

27



Correctness

Achieving perfection

Do away with blame

Just travel back in time to the code which was at fault
I No more issues with try-catch, without requiring fatal errors
I Undoing dynamic typing (Benton)

Use flow analysis to propagate all possible assertions into the past

I (that is, just infer conservative types on all untyped code)

28



Correctness

Achieving perfection

Do away with blame

Just travel back in time to the code which was at fault
I No more issues with try-catch, without requiring fatal errors
I Undoing dynamic typing (Benton)

Use flow analysis to propagate all possible assertions into the past

I (that is, just infer conservative types on all untyped code)

28



Correctness

Achieving perfection

Do away with blame

Just travel back in time to the code which was at fault
I No more issues with try-catch, without requiring fatal errors
I Undoing dynamic typing (Benton)

Use flow analysis to propagate all possible assertions into the past

I (that is, just infer conservative types on all untyped code)

28



Correctness

Achieving perfection

Do away with blame

Just travel back in time to the code which was at fault
I No more issues with try-catch, without requiring fatal errors
I Undoing dynamic typing (Benton)

Use flow analysis to propagate all possible assertions into the past
I (that is, just infer conservative types on all untyped code)

28



Correctness

Moral correctness

Anything less makes me uncomfortable, so must be wrong

29


	Introduction
	Background
	Semantic Differences
	Type Information
	Fatal Errors
	Correctness

