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Abstract

Self-hosted software language systems need to bootstrap
core components such as data structure libraries, parsers,
type checkers, or even compilers. Bytecode interpreters can
load byte code files, while image-based systems can load in
images of entire systems — Emacs, for example, does both.
Bootstrapping is more of a problem, however, for traditional
AST-based systems, especially when they must be portable
across multiple host systems and languages.

In this short paper, we demonstrate how abstract syntax
trees can quickly and easily be incorporated into the source
code of an embedded interpreter. Our key insight is that
a carefully engineered format enables textually identical
ASTs to be valid across a wide spectrum of contemporary
programming languages. This means languages can be self-
hosted with very little bootstrapping infrastructure: only the
host interpreter or compiler and a minimal default library,
while the rest of the system is imported as ASTs.

This paper outlines our technique, and analyses the engi-
neering design tradeoffs required to make it work in practice.
We validate our design by describing our experience sup-
porting the on-going development of GraceKit, which shares
a single Grace parser across host language implementations
from Java and JavaScript to Haskell and Swift and to Grace
itself, and even more eccentric languages like Excel.

CCS Concepts: « Software and its engineering — Inter-
preters; Interoperability; Reusability; Software design tradeoffs;
Source code generation; Retargetable compilers.
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1 Introduction

Bringing a new language implementation to life is a complex
task. This is especially so for partially or fully “self-hosted”
implementations, that is, the language is to be implemented
in itself [19]. Such a “meta-circular” [1] implementation may
be an interpreter or a compiler, and offers several key advan-
tages over building the system in a seperate “host” language:
the implementation can be easier to understand and modify
by people who understand only the new target language;
portable components can be shared across different language
implementations; programmers often prefer to work within
the target language they are building, rather than in older
legacy host languages. While Lisp-family languages (the
“second-oldest language still in common use” [38]) are the
paradigmatic examples of self hosting, languages as diverse
as BCPL [30], PL/0 [40]), and Smalltalk [5, 16] are often
self-hosted. Self-hosted implementations face an obvious
problem: the conceptual circularity of implementing a lan-
guage in itself, typically manifested as a pragmatic problem
of how best to build a self-hosted system in practice, without
writing large swathes of host language code.

Our contribution is an “obvious in retrospect” [33] solu-
tion to the problem of complexity standing up a new im-
plementation of a language: we represent ASTs in a for-
mat that can be directly embedded in a wide range of host
languages. For example, the AST for a simple declaration
“object { def x = 1}” can be embedded into a host program as
“objCons(one(defDec("x",nil,nil,numLit(1))),nil)”.
Section 2 outlines the core of this representation, and then
section 3 validates this design, using as a running example
GraceKit’s parser, which is embedded identically across Java,
Haskell, and JavaScript implementations, and is portable to
Swift and even Excel.

Like many solutions that are “obvious in retrospect”, while
the idea may be simple the practical realisation is not, so in
section 4 we contribute a detailed analysis of the engineering
and design required for a format to be flexible enough actu-
ally to be embedded within a wide range of host languages.
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In this paper we describe our experience with GraceKit, a
portable framework for implementing the Grace program-
ming language [2]. Grace is an object-oriented language
with suspiciously conventional curly-brace syntax, along
with multi-part method names and object-oriented seman-
tics closer to Smalltalk. Grace’s relatively small syntax and
straightforward semantics make it particularly suitable for
this experiment — although we expect this technique will be
applicable to different target languages as well as simultane-
ously portable across different host languages.

2 A Flexible, Embeddable AST

Figures 1(a) and 1(b) show an example Grace program (gen-
erating every GraceKit AST node) and the corresponding
GraceKit AST format. In one sense, our AST embedding is
straightforward, drawing on the traditional syntax of func-
tion names followed by parenthesised comma-separated ar-
gument lists. In another sense, this embedding is carefully
engineered to be as simple as possible, to capture all the
constructs of the Grace AST, to a limited extent to be human-
readable and editable, but above all to be directly embeddable
across many different host languages.

AST nodes are represented as calls to methods in an ab-
stract factory interface [14] (a.k.a. an object algebra [9]).
Nested calls to the node functions represent the tree struc-
ture of the AST, with the arguments to each function call
representing the children of that node. Once an interpreter
or compiler has implemented the abstract interface, invoking
the root AST node will recursively call the factory methods
to build an AST to suit the host language implementation.
This is why the interface is an abstract factory: the actual
nodes of the reified AST may be embodied by lists, records,
objects, (generalised) algebraic data types — whatever is most
convenient in each host language. Table 1 in the Appendix
outlines the entire API for the GraceKit AST.

3 Realisations

To validate our design, and to demonstrate its portability and
flexibility, we have constructed bindings for the GraceKit ab-
stract factory interface across eight different host languages
(at time of writing). Java, Haskell, JavaScript, and Grace
(self-hosted) support essentially interpreters for Grace; Swift,
ML/FY}, and Perl are currently proof-of-concept demonstra-
tors that can e.g. load ASTs and print them out, while Excel
is more a proof-of-bad-concept.

Recall that the contribution of this work is to enable porta-
bility of ASTs embedded across different host programing
languages — each host language still needs its own core in-
terpreter for the internal AST structure it constructs. Given a
core interpreter and some basic I/O primitives, a much larger
Grace system can be bootstrapped, notably including a lexer
and a parser, with little extra effort.
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Although Grace is not a particularly complex language,
nor is it particularly simple. Our proofs-of-concept demon-
strate that identical textual renderings of an AST can be
embedded and manipulated in each host language. The code
of these implementations is available at https://github.com/
mwh/wg.

3.1 Java

The Java implementation contains a standard tree-walking
evaluator capable of executing embedded GraceKit ASTs. In
particular, it is capable of executing the AST for the GraceKit
parser itself, demonstrating that an interactive (“REPL” loop)
interpreter can be bootstrapped without any native parser
written in the host language. Alternatively, a fixed program
AST can be hard-coded into a templated Java file with all of
the run-time support code, and this file can be compiled or
executed anywhere to run the original Grace program (see
Section 3.3).

The GraceKit parser is written in Grace and has been struc-
tured to impose minimal library and runtime requirements,
in order to ease this bootstrapping process. For example, it
does not make use of the language’s pattern-matching [22]
or advanced string-processing features, although these are
useful for a parser, because those would then need to be
included in the host’s initial implementation. It also does not
rely on any annotations, visibility, or other modifiers that
Grace includes having any impact at run time, so the host
is free to ignore them temporarily, or permanently. Origi-
nally developed running on the preéxisting Kernan reference
implementation of Grace [20] (an interpreter fully in C),
this parser has been self-hosting in our Java implementation
from a very early stage to validate the effectiveness of our
approach.

3.2 Haskell

The Haskell implementation can also load the full parser or
any other serialised AST. In Haskell (or other ML-like lan-
guages), the “argument lists” are in fact tuples, but precisely
the same serialised syntax is used unchanged. Unlike the Java
implementation, this implementation builds a continuation-
passing style (CPS) evaluator rather than tree-walking the
AST. The structure of the serialisation format does not con-
strain the nature of the evaluator, and two very contrasting
languages are capable of taking in exactly the same encoded
source code within their own syntax. With the parser com-
piled in, this implementation can also load and evaluate
Grace source code in-process, constructing the necessary
CPS functions from the parser’s AST dynamically. Figure 2
shows a brief extract from the Haskell implementation.

3.3 JavaScript

The JavaScript implementation also contains an evaluator
capable of evaluating the parser itself. The reflexive potential
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objCons(cons(importStmt("ast", identifierDeclaration("ast", nil)), cons(

import "ast" as ast —
// This file makes use of all AST nodes

def x = object {
vary : Number =1

method foo(arg : Action) bar(n) — String {
self.y = arg.apply + n
return "y @ {y}!"
}
}

L A A A

print(x.foo { 2 } bar 3)

comment(" This file makes use of all AST nodes"), cons(defDec
("x", nil, nil, objCons(cons(varDec("y", one(lexReq(one(part("
Number", nil)))), nil, one(numLit(1))), one(methDec(cons(part("

"

foo", one(identifierDeclaration("arg", one(lexReq(one(part(
Action", nil))))))), one(part("bar", one(identifierDeclaration("n",
nil))))), one(lexReq(one(part("String", nil)))), nil, cons(assn(
dotReq(lexReq(one(part("self", nil))), one(part("y", nil))), dotReq(
dotReq(lexReq(one(part("arg", nil))), one(part("apply”, nil))), one
(part("+", one(lexReq(one(part("n", nil)))))))), one(returnStmt(
interpStr(safeStr("y ", charAt, " "), lexReq(one(part("y", nil))),
strLit(safeStr("", charExclam, ""))))))))), nil)), one(lexReq(one(
part("print", one(dotReq(lexReq(one(part("x", nil))), cons(part(
foo", one(block(nil, one(numLit(2))))), one(part("bar", one(

numLit(3))))N))))), nil)

"

Figure 1. (a) A simple Grace program that covers every AST node, corresponding to the AST in (b). (b) An AST containing
every GraceKit node type, corresponding to the Grace program in (a).

1
2 | VarDecl String [ASTNode] [String] [ASTNode]
3 | NumberNode Double
4
5 cons = uncurry (:)
6 one hd = [hd]
7 nil =]
8 objCons (body, anns) = ObjectConstructor body anns
9 varDec (name, dtype, anns, val) =
10 VarDecl name dtype anns val
11 ..
12 toFunc :: ASTNode — (Context — 10 ())
13 toFunc (NumberNode v) =
14 \ctx — (continuation ctx) (GraceNumber v)
15 ..
16 program = objCons(cons(
17 varDec("x", nil, nil, one(humLit(1))),
18 one(lexReq(one(part("print",
19 one(lexReq(one(part("x", nil))))))))), nil)
20 main=do
21 let func = toFunc program
22 func dropContext

Figure 2. An extract from the Haskell implementation of
the evaluator for this serialisation.

of embedded ASTs raises an interesting opportunity in a lan-
guage like JavaScript: because our ASTs are valid JavaScript,
Grace code can be fed to the parser and the resulting output

data ASTNode = ObjectConstructor [ASTNode] [String] ~ AST evaled directly, as javaScript, in the scope of the ab-

stract factory interface, but without any further coordination
to construct the in-memory AST structure. This AST can
then be executed itself, also resulting in a complete inter-
preter for the language. This is a powerful demonstration of
the flexibility of our approach. Any other language with an
eval function could also use this strategy, and most of the
well-established drawbacks of eval [29] will not apply, as
the input ASTs are known to be well-formed and safe.

This implementation is accessible online as a web page,
accessible at https://mwh.nz/demos/mplr2025/. This imple-
mentation demonstrates our approach in multiple ways. It
can:

e Execute a Grace program directly, running the parser
in-browser to create the AST and then evaluating it.

e Produce and display the textual format of a Grace
program, which can then be copied and pasted into
another host language.

e Produce a single-file self-contained Java, Haskell, or
JavaScript program encapsulating both the serialisa-
tion of the entered Grace program and the run-time
support code, which can then be compiled or run
directly to execute that program using the host lan-
guage’s infrastructure (for example, by running java
GraceProgram. java to execute the given Grace pro-
gram on any system with Java).

While this last point is a convenient means of distributing
and proving the functioning of our implementations, the
Java and Haskell implementations on their own are more
general and not confined to a single file or fixed program.
It is possible to inspect the generated code to see that the
only difference between the generated host language code
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[l object _[import st binding ~ ast
2 ‘comment This file m

3 def x object  def y lexReq  part Number number
4 method  part foo binding  arg lexReq  part Action
5 part bar binding  n

9 lexReq  part print  dotReq receiver parts
10 lexReq  part x part foo block number
11 part bar number 3

lexReq  part String assign  dotReq  receiver parts

dotReq  receiver
lexReq  part self part y dotReq

retum  interpstr y@ string
lexReq  part y

Figure 3. The AST from Figure 1(b) loaded into Excel. Cell A1 contains the full AST, with the displayed values in all other

cells produced by the Excel implementation.

for different input programs is the single line of embedded
AST at the bottom of the generated host language file — the
rest of the file, being the AST interpreter and associated
primitives, will be identical in all cases.

3.4 Excel

The Excel implementation is a more unusual case. While not
a general-purpose programming language, the recent lambda
and dynamic array [26, 39] features of Excel permit defin-
ing the functions necessary for an AST to be loaded into a
spreadsheet cell. Like the other implementations, individual
named functions are defined for each of the nodes. The AST
itself is then produced spilling into adjacent cells, indented to
show the structure of the tree. Figure 3 shows the AST from
Figure 1(b) loaded into Excel, with all displayed cell values
produced by the Excel implementation. The AST formula
in cell A1 is visible in the formula bar. This implementation
does not evaluate the AST, and it is not clear that it (practi-
cally) could do, but it is a demonstration of the portability
of this approach that the resulting AST can be loaded into
a spreadsheet at all! It is possible to perform some analyses
on the loaded AST using the ordinary spreadsheet features
of Excel, and this may be useful in some circumstances.

3.5 Swift

Swift is an interesting target, as the restrictions on its prin-
cipal platform may make embedding an AST from another
language desirable, but Swift also has some unusual syntac-
tic and type features that mean it is not obvious that it is
compatible. In particular, the use of Swift’s Smalltalk-style
parameter labels would be incompatible with the AST format,
but these are not mandatory. nil is also a built-in polymor-
phic constant in Swift, however its uses are compatible with
how nil is used in our ASTs. Our Swift implementation does
not yet include an evaluator, but is capable of loading an AST
and regenerating (i.e. pretty-printing) the Grace source that
produced it.

3.6 Grace

Finally, our AST is valid in Grace itself. Our implementa-
tion of Grace-in-Grace uses the language’s “dialects” [21]
feature to bring the necessary functions and helpers into

scope, allowing a three-line program to load and evaluate
the translated code:

1 dialect "grast"

2 def program = objCons(one(lexReq(one(part("print", one(
< strLit("Hello, world")))))), nil)

3 run(program)

This is a toy example, but any Grace code, including the
parser or even this Grace-in-Grace implementation itself,
could be loaded in this way, opening up interesting self-
hosting or sandboxing possibilities.

We expect many other “curly-bracket” languages (as Ward
Cunningham once put it) will exhibit similar patterns to
the languages listed above, allowing for a wide variety of
languages to load a syntax tree in this format.

4 Design Considerations

The core goal of this format is to be simultaneously valid
in multiple languages from different traditions, a “polyglot”
program. Polyglot programs are not common in practice,
but are sometimes used in recreational programming; for ex-
ample, the Code Golf & Coding Challenges Stack Exchange
site [31] has over 1,800 answers to polyglot challenges, in-
cluding one that is valid in over 450 languages at once. These
recreational polyglot exercises do not have the same con-
straints as a practical AST format! Instead, they typically rely
on hiding some of the code from some of the languages, and
embody a single well-controlled program, while our ASTs
must be able to handle arbitrary user-defined input programs.
This makes a portable encoding a more challenging problem
than it might first appear. In this section, we discuss some of
the complications that arise in the design of such a format.

4.1 String Literals

Grace programs may contain string literals, and various
other constructs have textual names. These strings must
be encoded in the AST, so we must be able to encode arbi-
trary user-defined content into host language string literals,
which runs into a variety of complications across languages.
In particular, string escape characters, escape sequences, and
interpolation all raise distinct issues.

String interpolation is a feature of many languages where
an expression or variable may be substituted into a string
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literal, by writing some special syntax within the string. For
example, Perl will interpolate variables prefixed by $, @, or %
into double-quoted strings, while Swift takes whole expres-
sions bounded by \(...); other languages use various combi-
nations of braces, parentheses, and symbols. String literals
in Grace source programs may include these characters or
sequences, but they should not be interpolated when loaded
from the AST in a target language. To avoid these problems,
our encoding must prefix potential interpolations with an
escape character, such as a backslash —but different host
languages also have different rules for what can be escaped
in this way! For example, in Perl “\$” is needed to represent
a literal dollar sign, but in Java this is a fatal lexical error, as
“\$” is not a Java escape sequence.

Strings may similarly contain double quote characters.
Different languages provide different means for including
double quotes into string literals, such as escaping with a
backslash (e.g. C) or another escape character (e.g. Power-
Shell), doubling it (e.g. BASIC), or a generic character escape
(e.g. FORTRAN). A portable AST encoding cannot use any
of these constructs. Other escape sequences, such as \n for
a newline, are similarly problematic and represented differ-
ently in different targets. To be able to transport ASTs across
host languages, we must be able to represent these strings
faithfully with only constructs shared by all target languages.

To permit encoding arbitrary strings, including those con-
taining metacharacters, interpolations, or escape sequences
that may cause issues in some target languages, we use a
“safe string” format for any string that may contain such char-
acters. As well as functions, several constants charDQuote,
charDollar, ... are defined in the host, and the string is en-
coded as safeStr("pre", charDQuote, "post").Our typ-
ical host implementation constructs the fixed string directly
rather than representing this in the AST, so this construction
only exists in the serialisation to ensure portability.

4.2 Node Sequences

Many AST nodes are containers for arbitrary-length se-
quences of nodes, such as the list of statements in the body
of a method. With a single host language, there will often be
an obvious approach available: either use variadic parameter
lists, or use a list or array literal. Neither of these is usable for
a portable serialisation format, however, because the syntax
and availability of both constructions varies between lan-
guages. Instead, our AST must use a structure that is portable
across as many host languages as possible.

For this reason, the abstract factory interface represents
sequences using cons lists. A singleton list is represented as
one(node-expression) and an empty list as nil. As with
the other methods in the API, this does not constrain im-
plementations necessarily to operate on linked lists. Rather,
they can function as the interface to a Builder [14] construct-
ing a sequence representation that suits the host language
and API (e.g. using mutable lists, an immutable hash-cons’ed
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DAG [11], etc). In this way we trade concision for portability,
not relying on specific host-language features but with a
more verbose serialisation.

4.3 Language Keywords and Naming

The names of functions and terms in the serialisation must
not conflict with any keywords or reserved names in any of
the target languages. While this seems like a simple require-
ment, it is not entirely straightforward, especially with a goal
of each name being relatively short. Obvious names for AST
nodes like string, method, and var are reserved or built-in
types in many languages, while more unusual alternatives
that might be chosen for some term sometimes emerge as
reserved in a single language. For example, one draft of the
format used no as a marker for absent values, but this is a key-
word in Perl. Ensuring that all names used are permissible
in all target languages requires manual checking. Similarly,
some languages impose other restrictions on names, such as
case-sensitive semantics, or disallowing certain characters.
These also impose constraints on the names that can be used
in the serialisation format. Our design adopts mixed-case
names for API elements, with the first letter lower-case, and
all are at least three characters long (see Table 1 in the Appen-
dix). More common nodes are given shorter names within
these constraints, with the aim of being human-readable,
with effort, while being concise to save space.

4.4 Type Correctness

To be portable to statically typechecked languages, the AST
must be acceptable to the type checker in the host language.
The catch of course is that different host languages have
different type checkers: C’s type checker is rudimentary
compared with Haskell’s expansiveness. Similarly, there are
encodings (JSON) that are viable in dynamically-typed lan-
guages but that should be rejected by any self-respecting
statically-typed language: we cannot use these.

We are well-served in that the host languages we hope
to address not only can tolerate data structure “literals” in
an Algol-like suffix-parenthesized syntax, but also that that
syntax does not require type declarations at point of use.
So while more advanced type systems like Family Polymor-
phism [10] or Generalized Algebraic Data Types [24] can
better capture the finer details of the recursive and structural
type relationships within syntax trees, we can get by with
coarser-grained types, or indeed none at all. Host implemen-
tations may need to make notionally-unsafe casts, double
dispatches, or similar to resolve types with a finer granular-
ity. The ASTs we generate should always be valid in practice,
so these casts should never fail, even in expansively typed
languages [28].

4.5 Line Length

By default, we produce one long line representing the com-
plete AST. As languages have different ideas about internal
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line breaks and indentation, generating just one line lets us
sidestep all these issues.

When embedded in actual source code text files for a
target language, however, this can cause problems for some
tools, such as text editors or language servers. Long lines
may breach the POSIX definition of a text file [36], which
only mandates supporting lines of at least 2048 characters.
Similarly, a language may define thresholds for line length or
nesting parentheses, and allow conforming implementations
to reject programs exceeding those limits (for example, the
C specification requires only 4,095 bytes in a line and 63
levels [23] of nesting).

In these scenarios, it is possible to format the code in any
manner accepted by the host language, such as by breaking
subexpressions across lines or indentation adjustments. In
practice, no implementation we have made has required any
of this massaging, even when embedding the GraceKit parser
(whose AST is over 100KB) into a source file.

5 Discussion, Related Work, and
Conclusion

As we mentioned in the introduction, simultaneously portable
polymorphic ASTs are “obvious in retrospect” — so obvious,
perhaps, that there is little analysis in the literature. Lisps
(especially Scheme) have the strongest tradition of building
self-interpreters [35], with the complementarity between
data constructors and function calls being well known [32].
Scala incorporates the TASTY format for their ASTs, also
built using an abstract factory, however this is a binary for-
mat rather than a portable multilingual program [34].

Based originally on the self-interpreter at the end of the
Smalltalk language book [16], Smalltalk systems often use
special-purpose domain-specific languages to implement
primitive operations or to extend virtual machines [27]. In
some sense this is the exact reverse of the approach we pro-
pose here: we propose a single common serialisation that
works as is across many implementation languages — while
DSLs are single unique representations that are not natively
supported by any implementation languages, but must be
transcoded or transpiled [3, 4, 13]. Similar DSLs have been
used to support or extend Python [12] and Lua [17, 18], while
GOOL takes this to the extreme, with a “generic” syntax em-
bedded in Haskell that generates code in a range of object-
oriented languages [7]. Selfie [25] implements a self-hosted
subset of C, along with a parser and bytecode VM, in a sin-
gle C source file. Many other systems, including especially
Enso and POPLog [6], have focussed on self-hosted support
for languages with more syntax than just S-expressions or
FORTH postfix operator streams. Simultaneously portable
polyglot ASTs could also be useful in attempts to “deboot-
strap” language implementations [8].

We have constructed this system for the Grace language,
but the techniques used should be applicable to any language
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that can be represented as an AST. A similar embeddable
format for a different language would use a different set
of node-constructing functions, but the general principles,
and particularly the engineering considerations addressed
in Section 4, would be the same. While in this work we
have focused on direct representations of abstract syntax
trees, the same techniques could also be used for lower-level
intermediate representations.

This format offers some interesting possibilities for self-
hosting systems. Because the parser is written in the lan-
guage it parses, it can be bootstrapped via an embedded AST
with only a straightforward AST interpreter, plus I/O primi-
tives, on the host side. After this, though, a more interesting
avenue emerges: because the parser will produce ASTs as
valid Grace objects, those ASTs can be fed into other Grace
programs — such as a type checker or macro rewriter — also
written in Grace, and also embedded as an AST. This allows
for a very simple bootstrapping process, where only the core
interpreter is needed in the host language to get up and run-
ning, while other phases are written in the source language
and shared across diverse host languages. These phases do
not need to be aware of each other, so long as they use the
same AST. Furthermore, as an AST can be fed back into a
different implementation of the abstract factory interface,
these phases do not even need to share the same internal
structures (object algebras [9], metamorphisms [15]).

We expect the general scheme of embedding ASTs should
work across almost all programming languages, or at least
all textual programming languages. While our AST design
covers a wide class of “Algol-like” host languages — and sim-
ple textual substitutions should enable support of even more
(Smalltalk and Pascal, for example, delineate comments with
double quotes “"'” and strings with single quotes “'”), there
are families of language syntax with which our syntax is
less easily compatible, such as Lisp, TeX, Forth, and most
command languages. These languages have fundamentally
different syntax regarding parentheses, commas, or order-
ing of terms. Some of these languages’ advanced features
(such as Lisp’s reader macros [37], Forth’s parsing words, or
TeX’s catcodes) should even permit embedding our Algol-
like ASTs directly — we leave this for future work, since we
lack the necessary lifetimes of hermetic background. Other
languages, such as Unix shells or Tcl, would likely require
the design to be reworked to fit that context — although the
principles from section 4 will still apply.

To conclude: a carefully engineered polyglot AST serialisa-
tion format can be a powerful tool for aiding the implementa-
tion and embedding of programming languages, particularly
in self-hosting systems. This short paper is a demonstration
of this vision, and we hope that it will inspire further work
in this area.

A ASTAPI
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Table 1. GraceKit AST Abstract Factory Interface

ObjectConstructor [ASTNode] [String]
VarDecl String [ASTNode] [String] [ASTNode]
DefDecl String [ASTNode] [String] ASTNode
ExplicitRequest ASTNode [Part]

LexicalRequest [Part]
NumberNode Float

Block [ASTNode] [ASTNode]
MethodDecl [Part] [ASTNode] [String] [ASTNode]

Assign ASTNode ASTNode
ReturnStmt ASTNode

IdentifierDeclaration String [ASTNode]

StringNode String

InterpString String ASTNode ASTNode

Comment String
ImportStmt String ASTNode
DialectStmt String
TypeDecl String ASTNode

InterfaceConstructor [MethodSignature]
MethodSignature [Part] (Maybe ASTNode)

Part String [ASTNode]

An object constructor.

Variable declaration: name, type, annotation, initialiser.
Constant definition: name, type, annotation, initialiser.
method request with an explicit receiver (“dotted call”)
method request with an implicit receiver (“undotted call”)
Number literal

Closure with parameters and body

A method declaration: names, types, annotation, body
Assignment

Return

Declaration of String as an identifier

Plain String literal

Interpolated String Literal

Comment

Import statment to load a module

Dialect statement to declare a sublanguage

Type declaration

Interface declaration

Grace multi-part method signature

An individual part of a method signature.

Table 2. Variable Element List Interface

Nil Empty List or missing optional item.
One Item Singleton List.
Cons Head List Cons a new Head onto a List.

Table 3. String Escapes

charDollar $
charBackslash \
charDQuote "

charLF Line Feed
charCR Carriage Return
charLBrace {
charStar *
charTilde ~
charBacktick
charCaret 5

charAt c]
charPercent %
charAmp &
charHash #

charExclam
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