
Dafny vs. Dala: Experience with Mechanising Language Design
James Noble*

Creative Research & Programming
Wellington, New Zealand
kjx@programming.ac.nz

Julian Mackay
School of Engineering & Computer

Science
Victoria University of Wellington

Wellington, New Zealand
julian.mackay@ecs.vuw.ac.nz

Tobias Wrigstad
Department of Information

Technology
Uppsala University
Uppsala, Sweden

tobias.wrigstad@it.uu.se

Andrew Fawcet
School of Engineering & Computer

Science
Victoria University of Wellington

Wellington, New Zealand
fawcetandrew@ecs.vuw.ac.nz

Michael Homer
School of Engineering & Computer

Science
Victoria University of Wellington

Wellington, New Zealand
mwh@ecs.vuw.ac.nz

Abstract
Dala is a design for a concurrent dynamic object-oriented language.
A key goal of Dala’s design is to avoid data races, by ensuring
threads do not share mutable state. In this paper we discuss our
experience using the program verification tool Dafny to validate
Dala’s design. We explain how we modelled salient features of Dala
in Dafny, and how Dafny did (or did not) assist our confidence in
Dala’s design.

CCS Concepts
• Software and its engineering → Object oriented languages;
Software verification; Semantics.

Keywords
Dala, Dafny, Ownership, Uniqueness, Immutability

ACM Reference Format:
James Noble, Julian Mackay, Tobias Wrigstad, Andrew Fawcet, and Michael
Homer. 2024. Dafny vs. Dala: Experience with Mechanising Language De-
sign. In Proceedings of the 26th ACM International Workshop on Formal
Techniques for Java-like Programs (FTfJP ’24), September 20, 2024, Vi-
enna, Austria. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3678721.3686228

1 Introduction
Today’s phones and laptops have ten or more processor cores, while
datacentres have tens of millions. To use all these cores effectively,
programs have to be concurrent, with multiple simultaneous threads
of execution. Most of today’s concurrent programs, however, are
written in low-level languages which provide no correctness guar-
antees. To address this problem, we have been working on the
design of Dala, a simple concurrent object-oriented programming
language [26, 27], based on the Grace educational object-oriented

*Also with Australian National University.

FTfJP ’24, September 20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the
26th ACM International Workshop on Formal Techniques for Java-like Programs (FTfJP
’24), September 20, 2024, Vienna, Austria, https://doi.org/10.1145/3678721.3686228.

programming language [4]. Dala is based on a novel model of con-
current dynamic ownership [28, 51] tailored to ensure that all valid
programs are thread-safe by design (aka data race free, "fearlessly
concurrent", "disentangled" etc). We have a design for Dala, proto-
type implementations based on various different Grace systems, and
a LATEX formal model which we claim ensures data-race freedom
[25, 27].

In this short paper, we describe our attempts to formalise key
features of the design of Dala using the Dafny verification-based
programming language [42, 44, 48]. We have chosen to work with
Dafny for the simple reason that Dafny was the verification tool
with which we had the most experience [22, 50, 52]. Compared with
some other tools [16, 18, 45], Dafny is not designed for validating
type systems [19, 46, 47]: we hope this project will help to evaluate
Dafny in such a task.

The next section introduces Dala and Dafny, and then we present
some key features of modelling Dala with Dafny.

2 Background
2.1 Ownership and Structured Heaps
Many contemporary programming languages such as Rust [36],
Pony [14], Encore [9], Obsidian [15], and Verona [12] have demon-
strated the efficacy of static ownership [13, 53] to ensure concur-
rent programs are safe: Rust in particular has been adopted by Mi-
crosoft [34, 38].

By keeping track of each object’s ownership, these languages can
determine when an object may be used, when it may be changed,
and the effects those changes can have on the rest of the program.
While much simpler than full-scale program proof systems, these
languages rely on complicated static (compile-time) rules and re-
strictions, with many different capability annotations and ownership
parameterisations that many programmers often find hard to learn
and use correctly [1, 5, 56]: they support writing correct and effi-
cient programs, but they are still hard to understand [35, 58] for a
number of reasons. First, their design must be conservative, banning
not just all programs that are actually unsafe, but a large number
of correct programs as well. To programmers, this manifests as a
large number of false positive errors or warnings about problems
that will never arise in practice. For example, Rust’s version of

https://orcid.org/0000-0001-9036-5692
https://orcid.org/0000-0003-3098-3901
https://orcid.org/0000-0002-4269-5408
https://orcid.org/0009-0006-0078-7327
https://orcid.org/0000-0003-0280-6748
https://doi.org/10.1145/3678721.3686228
https://doi.org/10.1145/3678721.3686228
https://doi.org/10.1145/3678721.3686228

FTfJP ’24, September 20, 2024, Vienna, Austria James Noble, Julian Mackay, Tobias Wrigstad, Andrew Fawcet, and Michael Homer

ownership types [36] bans even such common idioms such as cir-
cular or doubly-linked lists. Second, programmers typically have to
annotate their programs to give the ownership and capability check-
ers the information they need — so rather than declaring an input
stream “in”, programmers need to write complex expressions such
as “in : &mut InStream<'a>” (where “&mut” indicates that
“in” is a mutable reference, “InStream” indicates that “in” refers
to an input stream, and “<'a>” is a lifetime (aka ownership) pa-
rameter indicating the originating scope of the input stream. Finally,
these ownership annotations are required throughout the program,
even if only a small part is actually concurrent, or is otherwise likely
to cause critical errors — in Rust, an inflight entertainment system
would have to be engineered to the same level of quality as a critical
flight control system, even though the risks and requirements for
each system are very different.

2.2 Dala: a simple concurrent language
Dala is a simple concurrent object-oriented programming language [26,
27] based on concurrent dynamic ownership [28, 51]. Dala is based
on dividing objects in programs into one of three core ownership ca-
pabilities:
Immutable values can
be shared freely within
and between concurrent
threads but cannot be
updated; Isolated ob-
jects can be updated
and transferred between
threads but can only
have one unique refer-
ence; and Local objects
that can be accessed, up-
dated, and shared only
within a single thread.

In Dala, however, these
capabilities do not stand
alone: rather they form an ownership hierarchy (Imm < Iso < Lo-
cal) that constrains interobject references: an immutable object can
only refer to other immutable objects; an isolated object can refer
to other isolated or immutable objects; and a local object can re-
fer to immutable objects, isolated objects, and other local objects
(see right). The hierarchy will be enforced by ownership checks
integrated into the programming language: unintentional (buggy)
or intentional (malicious) attempts to subvert the ownership model
must be prevented by the language implementation (not the user).
Enforcing the capability ownership hierarchy will ensure concurrent
safety via data-race freedom, because threads can only communi-
cate by reading immutable objects (which is always safe, because
immutable objects never change) or by transferring isolated objects
between threads (which is safe because isolated objects can only be
accessed by one thread at any given instant).

2.3 Dafny
Dafny [48] is a verification-aware strongly typed programming lan-
guage (with local type inference, objects, and algebraic data types)

first developed at Microsoft Research (MSR) [49] and currently sup-
ported by the Amazon Automated Reasoning research group [2].
Dafny’s toolchain includes translators for generating executable
code in different target languages such as C#, Java, JavaScript, Go
and Python [20]. But the distinguishing feature of Dafny is that
it supports code verification via design by contract. For that, it
follows the framework of Floyd-Hoare-style [32] program verifica-
tion with preconditions, postconditions, loop invariants and other
high-level formal proof synthesis features such as pure functions,
predicates, lemmas, and automated proof by induction. Dafny em-
ploys explicit dynamic frames to determine which assertions may
be invalidated by imperative updates: imperative methods must be
annotated writes S. . . to gain permission to write to objects in the
set S (or occasionally, writes S`f. . . to write only to field f of the
objects inS).

To develop a verified program, developers write Dafny code along
with the specifications and annotations to reason about the correct-
ness of their code. While coding in Visual Studio, the Dafny static
program verifier instantly verifies the functional correctness based
on developers defined specifications and annotations. Correctness
means the absence of any runtime errors with respect to the formal
specifications, which means that the code does what the developers
specify it to do. In order to confirm that the developer specifica-
tions holds, the Dafny program verifier first transforms the code into
an intermediate verification representation (IVR) known as Boogie
IVR [39] language that expresses the verification conditions into
predicate calculus [43]. Next, an SMT solver tries to prove the ver-
ification conditions. In this phase, the Dafny verifier is backed by
an advanced SMT solver known as the Z3 theorem prover [21]. The
validity of these verification conditions implies the correctness of the
code under consideration [43]. Sometimes, however, the Z3 solver
cannot automatically reach the required proof even though such
proof exists. In such cases, developer intervention is required to give
more context in the specifications by writing auxiliary verification
conditions in the form of functions, predicates, and lemmas.

In recent years, Dafny has had major successes: Microsoft used
Dafny to formally verify security libraries and kernels [23, 37],
distributed systems [30], and concurrent programs [31]; Intel is de-
veloping its hardware encryption library using Dafny [59]; Consen-
Sys successfully applied Dafny for their Ethereum Virtual Machine
(EVM) verification [8]; Amazon implemented the Amazon Web
Service (AWS) authorization and encryption logic in Dafny and
deployed the Dafny-generated Java code into production [11, 17].

We can compare Dafny with tools more commonly used to verify
programming language designs such as REDEX [24] or Coq [3, 18].
REDEX is a testing and exploration tool: designers can express the
semantics of a whole language, and test and explore those semantics,
but REDEX itself does not make a claim to formal validation. On
the other hand, as a higher-order dependently-typed total functional
language, designers can use Coq to both specify and prove entire
languages — but constructing such a explicit proof can take a large
amount of time, and an even larger amount of expertise. Superficially,
Dafny’s validation claims are much weaker than Coq’s, as Dafny’s
implementation (verification condition generator, SMT solver) is
not itself verified. While a proof in Coq is explicit in the syntax and
must be manupiulated by the programmer, such a "proof" as Dafny

Dafny vs. Dala: Experience with Mechanising Language Design FTfJP ’24, September 20, 2024, Vienna, Austria

constructs is implicit: users write specifications and programs, but
it’s Dafny’s job to validate them.

3 Modelling Dala with Dafny
3.1 Dala Objects
The core of our model of Dala is the Dafny class Object (note that
while object is a reserved word in Dafny, Object is not — neither
is Class)). Class Object models the essentials of a Dala object in
the heap:

class Object {
const kind : Kind;
const fieldKinds : map<string,Kind>;
var fields : map<string,Object>;

The key fields of an Object are the kind, the fieldKinds, and
the object’s fields.

The Dala model is fundamentally untyped, in that it is not set up
to track e.g. the differences between a Point and a Rectangle class.
Rather the kind field captures the object’s ownership capability:
Immutable (Imm), Isolated (Iso), or Local (Mut, originally mutable).

datatype Kind = Imm | Iso | Mut

We treat Dala’s ownership capabilities more like meta-classes
or meta-types rather that traditional types: they are close to what
are often called "reference capabilities" [7, 10] but apply to each
individual object rather than each reference to an object. In many
languages capabilities manifest as additional keywords or attributes
attached to variables that control how those variables may be used
— i.e. how they relate to heap topologies and their evolution. In
the Dafny code example above, the difference between const and
var could potentially be considered different kinds of reference
capability.

In Dala, then, an object’s kind is the kind of object (ownership
capability) that the object is. fields models object’ fields, as a map
between each field name (as a string) and the Object stored in that
field, and the fieldKinds likewise gives the potential kind for each
field.

Dafny maps are immutable data structures — only Dafny class
instances are mutable, and then only var fields of classes; const
fields are, well, constant. What this means is that while the values
stored by Dala objects’ fields can change (or rather, while our model
permits them to change) the kinds of each field of each instance of
that Dalia class are fixed.

The Object class contains a number of helper functions, such as
outgoing(), which returns all outgoing references from an object,
abstracting away field names; and fieldNames() which returns the
names of fields, without their values.

Finally, the class contains a Dafny invariant, represented as a
Dafny predicate conventionally called Valid(), which ensures the
validity of each individual object. This predicate is typically defined
as a conjunction of smaller invariants that must usually be adjusted to
suit the particular heap being modelled. A minimal validity predicate
would be something like this:

predicate Valid()
reads this`fields
{ AllFieldsAreDeclared() ∧ AllFieldsConsistentWithDclrn() }

saying that all fields (entries in the fields) must have a correspond-
ing entry in the fieldKinds, and that the kind of object stored in a

field must match the kind expected for that field. These are defined
by auxiliary predicates:

predicate AllFieldsAreDeclared()
reads this`fields
{ fields.Keys ⊆ fieldKinds.Keys }

predicate AllFieldsConsistentWithDclrn()
requires AllFieldsAreDeclared()
reads this`fields
{ ∀n <- fields :: fieldKinds[n] == fields[n].kind }

3.2 Dala Heaps
The other main structure in Dala is the heap itself, modelled by the
eponymous Heap class. The Heap class looks trivial — a Dala heap
is just a set of Dala objects:

class Heap {
var objects : set<Object>

The full Heap class contains many auxiliary functions and invari-
ants to capture the non-local structure of the heap. Thus there are
corresponding class invariant validity predicates:

predicate Valid()
reads this`objects, objects
{ ObjectsAreValid(objects) ∧ OutgoingRefsInThisHeap(objects) }

where ObjectsAreValid(objects) asserts each object’s own
Valid() predicate; and OutgoingRefsInThisHeap checks that
the heap is closed, in the sense that there are no references to objects
somehow "outside" the heap:

predicate ObjectsAreValid(os : set<Object>)
reads os
{ (∀ o <- os :: o.Valid()) }

predicate OutgoingRefsInThisHeap(os : set<Object>)
reads this`objects, objects, os
{ (∀ o <- os :: o.outgoing() ⊆ objects) }

The validity predicate will typically be invoked in method precondi-
tions — Dafny does not assert class invariants automatically, rather
programmers must follow conventions [55].

Unlike individual objects, Dala models often need to control the
evolution of the heap, and so the class also declares an additional
"two-state" predicate to capture the history constraint [40]. Unlike
normal (aka "one-state") predicates, two-state predicates have access
both to current values (unmarked) and values at the start of the con-
taining method call (marked "old"). As such, two-state predicates
can only be invoked from "two-state contexts", such as within an
ensures clause or an assertion in a method body, where there are
two states that can be compared.

twostate predicate Valid2()
reads this`objects, objects, objects`fields
ensures Valid2() =⇒ Valid()
{ Valid() ∧ HeapObjectsAreMonotonic() }

Here, for example, we can require that heap objects are mono-
tonic — i.e that objects are never actually removed from the heap.
(Note that heap models that e.g. wish to model explicit memory
deallocation probably would not include this invariant).

twostate predicate HeapObjectsAreMonotonic()
reads this`objects
{ old(objects) ⊆ objects }

FTfJP ’24, September 20, 2024, Vienna, Austria James Noble, Julian Mackay, Tobias Wrigstad, Andrew Fawcet, and Michael Homer

Other utility functions are then provided as methods outside the
class. For example: edges(objects) transforms a set of objects
— often the objects field of a heap — into an adjacency set, i.e.
a set of (from, name, to) triples as an alternative representation of
the whole graph. Due to the idiosyncrasies of Dafny’s verification,
it turned out easier to generate the edge-list representation from
the set-of-objects representation, rather than the other way around,
or by maintaining both representations and continually assuring an
overanxious Dafny, at pretty much every line of code, that the two
were in sync.

3.3 Dala Ownership Hierarchy
We need to encode the ownership capability hierarchy as a Dafny
predicate, that determines whether an object of kind f (from) can
point to an object of kind t (to). (Note Dafny’s alternative prefix
syntax for repeated Boolean conjunctions.)

predicate DalaRefOK(f : Kind, t : Kind)
{
∨ t.Imm? //anything can point to Imm
∨ f.Mut? //mut can point to anything
∨ (f.Iso? ∧ t.Iso?) //iso can point to Iso (and Imm, obvs)

}

Finally we need to work this constraint throughout the heap model
as a whole. We expand on the Object class invariant to ensure that
all the field values — the outgoing references — confirm to the Dala
model:

predicate Valid()
reads this`fields
{
∧ AllFieldsAreDeclared()
∧ AllFieldsConsistentWithDclrn()
∧ AllOutgoingRefsDala()
}

based on an auxiliary predicate that quantifies over all the fields in
the object, and requires that the object’s kind is compatible with the
kind of the contents of each field fields[n].kind:

predicate AllOutgoingRefsDala()
reads this`fields
{ ∀n <- fields :: DalaRefOK(kind, fields[n].kind) }

3.4 Modelling Operations
Given we are taking a lightweight approach, we do not wish to pro-
duce a full operational semantics for Dala (or, likewise, require that
programmers would have to be able to read a complete semantics
for a language e.g. to find out what an "immutable" or a "unique"
object means). Rather, we model the interface between the opera-
tional semantics or an interpreter as a series of Dafny methods on
the Heap class. The code of these methods are trivial: the tricks
come in writing the necessary pre- and post-conditions so that Dafny
can verify that they maintain the invariants structuring the heap,
i.e. the predicates installed as the one-state class invariant Valid()
and two-state history constraint Valid2() defined within the Heap
class.

For example, here is the code of the interface method for adding
a new object within the heap:

method fAddObject(nu : Object)
{ objects := objects + {nu}; }

so far so good: add the nu object into the set of objects on the heap.
Dafny abstracts methods as their pre-conditions (requires) and
post-conditions (ensures) so the actual method header must include
these specifications:

method fAddObject(nu : Object)
requires Valid()
requires nu.Valid()
requires nu.size() == 0
requires nu ∉objects
modifies this`objects
ensures Valid2()
ensures unchanged(nu)
ensures objects == old(objects) + {nu};

so that the method can rely on the class invariants of both heap and
new object; check that the new object has no fields (to which objects
would they refer?); that the new object isn’t already in the heap; that
it will modify the list of objects in the heap; and that when completed
the history constraint will be maintained (which also maintains the
class invariant); that the new object itself is not modified; and that
the objects in the heap now consist of all the objects previously in
the heap, plus the object just added!1. We list these here not because
the details are really important — they’re not — but rather to give
an idea of the amount of effort required to specify something that
simple.

Finally, fAddObject requires another three lines within the method
body to enable Dafny to verify the invariants:

assert edges(objects) == edges(objects + {nu}) ==
old(edges(objects));

The issue here is that Dafny’s axioms for the built-in collections
(here sets) do not cover extensionality: this assertion provides a hint
to the verifier that adding an object with no outgoing edges doesn’t
change the edges in the heap.
Table 1 below shows the core operations we modelled to capture
basic heap semantics.

Table 1: Core API for basic Dala model.

method fAddObject(nu : Object) — add a new object
to the heap.

predicate fExists(o : Object, n : string) —
true if field f has a value (is not null)

function fRead(o : Object, n : string) : (r :

Object) — read field value
method fInitialise(o : Object, f : string, t :

Object) — initialise a null field
method fNullify(o : Object, f : string) —

remove a field value

method dynMove(o : Object, n : string, f :
Object, m : string)

returns (r : Status) — Dala dynamically
checked "move" o.n <- f.m;

method dynCopy(o : Object, n : string, f :
Object, m : string)

returns (r : Status) — Dala dynamically
checked "copy" o.n := f.m;

1Whew!

Dafny vs. Dala: Experience with Mechanising Language Design FTfJP ’24, September 20, 2024, Vienna, Austria

Then, perhaps surprisingly, we need only a few additional annota-
tions for Dafny to be able to verify that the operations of the language
maintain the heap structures so that the ownership capability hier-
archy is preserved. Much of the work is done by fInitialise,
which writes a value into a waiting empty field — in fact, really by
only three preconditions (or really by two actual preconditions and
the invariant) of fInitialise:

method {:timeLimit 60}
fInitialise(o : Object, f : string, t : Object)
requires Valid()
requires o.fieldKinds[f] == t.kind
requires DalaRefOK(o.kind,t.kind)
. . .

{

The first precondition is just the class invariant (that’s the precon-
dition that was already there). By extending the the class invariant
to include DalaRefOK, Dafny automatically assumes the object ca-
pability hierarchy will be maintained upon entry to the method; and
because it is also incorporated in the history constraint in the post-
condition, the method itself must also maintain the hierarchy. The
second precondition requires that the kind of the object about to be
assigned to a field is the kind of the object expected by that field
(Dala kinds are non-polymorphic and invariant). The third precondi-
tion requires that a references from the source object to the target
will also maintain the object capability hierarchy. So we have that
the existing references maintain the hierarchy in the pre-state; now
the new reference also maintains the hierarchy; so all the references
in the heap maintain the hierarchy in the post-state and initialise
verifies.

3.5 Immutability
Many programming languages support one kind or another of im-
mutable objects (also known as value objects, frozen objects, or
just values) which cannot change. Immutability can be modelled
straightforwardly in Dafny, and the predicates can be incorporated
into any definition that requires immutability. We will use the kinds
of objects defined above to distinguish between immutable vs muta-
ble objects. Then we must give some semantics to the Imm kind of
immutable objects. What makes an object immutable is that "naught
changeth thee" [57], i.e. that the object is the same before any inter-
action as it is afterwards. We can encode this as a two-state predicate
that can be conjoined into a Dala Heap’s Valid2() predicate:

twostate predicate AllImmutablesAreImmutable()
reads this`objects, objects, objects`fields
{
∀o <- (objects * old(objects)) :: o.kind.Imm? =⇒

(o.fields == old(o.fields))
}

which means for all objects existing both in the pre- and post-states,
if an object’s kind is immutable, then all its fields in the old pre-state
must equal those in the current post-state. Note that since Dafny
maps are themselves immutable values, we can compare entire maps
to one another with simple equality.

3.6 Uniqueness
Another feature enjoyed by many of the coming generation of im-
perative languages is uniqueness: that there is at most one reference
to any unique object [33]. This is also relatively straightforward to

model in Dafny, and so supports Dala’s unique objects — mostly
known as Isolated Objects, or Isolates, thus kind Iso. We need to
express the invariant that a unique Iso object has no more than one
incoming reference. We can write an auxiliary function to extract all
the (should-be) unique-kind objects — of note are three postcondi-
tions that were required to facilitate verification: that every object
in the result is an Iso; that all the Isos in the input are in the output;
and that if the input is empty, so is the output.

function justTheIsos(os : set<Object>)
: (rs : set<Object>)

reads os
ensures ∀r <- rs :: r.kind.Iso?
ensures ∀o <- os :: o.kind.Iso? =⇒ o in rs
ensures (os == {}) =⇒ (rs == {})
{
set o <- os | o.kind.Iso?

}

Using this function, and another function of around the same
complexity that, given an object i and set of edges edges, returns
the number of edges incident on the object — i.e. that object’s
reference count — we can define an invariant that all Isos have no
more than one incoming reference:

predicate IsosAreUnique(os : set<Object>)
reads os
{
var edges := edges(os);
var isos := justTheIsos(os);
∀i <- isos :: refCntEdges(i, edges) ≤ 1

}

This is the easy part. The harder part is that every operation that
might modify the Dala heap must be verified by Dafny, and main-
taining the IsosAreUnique predicate requires several additional
assertions and a lemma. We don’t have the space to go over this in
detail: but here is the imperative core of the fInitialise interface
method that assigns a new object to an already-null field, and the
necessary additional verification assertions:

1 method {:timeLimit 60} fInitialise(o : Object, f : string, t : Object)
2 {
3 assert t.kind.Iso? =⇒ refCntEdges(t,edges) ==

0;
4 o.fields := o.fields[f := t];
5 assert ObjectsAreValid({o});
6 assert edges(objects) == old(edges(objects)) + {Edge(o,f,t)};
7 assert (o ≠ t) =⇒ incomingEdges(t,{Edge(t,f,o)}) ≠

{Edge(o,f,t)};
8 assert incomingEdges(t,{Edge(o,f,t)}) == {Edge(o,f,t)};
9 RefCountDistOverDisjointEdges(justTheIsos(edges), old(edges), {Edge(o,f,t)});

10 }

Note in particular:
line 1, {:timeLimit 60} tells Dafny to spend more time to verify
this method;
line 3 we reassure Dafny that if the new field value is supposed to
be unique, then it currently has no incoming references from other
fields. (If the object has just been read from a field, that field must
already have been nullified, thus dropping the reference); This asser-
tion acts as a hint to the verifier.
line 4 does all the work that needs to be done;
line 5 reminds Dafny that all objects should still be valid individu-
ally;
line 6 tells Dafny how the edges in the heap graph have changed as
a result of line 4;

FTfJP ’24, September 20, 2024, Vienna, Austria James Noble, Julian Mackay, Tobias Wrigstad, Andrew Fawcet, and Michael Homer

lines 7 & 8 explain consequences of the changes made in line 4 &
described in 6;
finally, line 9 invokes a lemma expressing the graph-theoretic prop-
erty that the reference counts to a set of objects distributes over two
disjoint sets of edges involving those objects.

3.7 Move vs Copy Semantics
Since 2011, C++ has distinguished between what it calls copy seman-
tics — essentially the situation from earlier versions of C++, where
an assignment copies memory from rvalue to lvalue, leaving both
rvalue and lvalue accessible afterwards, and move semantics where
an assignment "moves" data from rvalue to lvalue, meaning that the
rvalue is conceptually nullified by the move, and so is no longer
accessible [6]. (In practice, the implementation of copy and move
are identical: the only difference is in the continued accessibility of
the rvalue afterwards [29]). Rust, famously, is built around the same
distinction, and Dala also uses the distinction with Isos (copying a
reference to an Iso means the Iso is no longer unique, thus breaking
the heap structure invariant).

It is also straightforward to model these two different operations
in our Dafny model. Here is the imperative core of the method that
will move the contents of field m from object f into field n of object o
— we retrieve the value from the source field, nullify the destination
if necessary, nullify the source, and eventually write the value back
into the destination field.

method move(o : Object, n : string,
f : Object, m : string)

{
var value := f.fields[m];
if (fExists(o,n)) {fNullify(o,n);}
fNullify(f,m);
fInitialise(o,n,value);

Verification is straightforward unless we’re moving an Iso: if we
are, we need to reassure Dafny that reference counts distribute over
disjoint sets of edges yet again, and other similar things.

Copy semantics, although in some sense it "feels" like a more
complex operation —- and copying things is certainly more com-
plex than moving things in the physical world [41] — has an even
simpler definition and simpler proof. Still omitting the pre- and post-
conditions, here’s the entire body of copy, not just the imperative
core:

method copy(o : Object, n : string,
f : Object, m : string)

{
var value := f.fields[m];
if (fExists(o,n)) {fNullify(o,n);}
fInitialise(o,n,value);

We have three of the same statements as for move — omitting the
line that nullifies the source. There’s also one time limit directive
required. The key difference, it turns out, doesn’t turn directly on
the nullification itself, but rather on the fact that move can be used
to move references to unique Iso objects, while copy cannot. Copy
has a precondition that prevents it from being applied to Iso objects
(by preventing it from being applied to fields whose fieldKind is
Iso: we know any other kind of field does not contain an Iso), so the
whole question can be sidestepped, whereas move must ensure the
heap structure invariants around Iso objects are maintained.

4 Conclusion
Formal methods and tools are becoming more popular in software en-
gineering practice, and accordingly more common in programming
language design. We have described our experience in attempting
to increase our assurance in the design of the Dala language, by
modelling the key parts of Dala’s design and then verifying that
model in Dafny.

So far, this approach has been fruitful: we have been able to model
a range of heap constraints in Dafny, and then express and verify
that those constraints are maintained. The key factors supporting this
outcome were the Dafny tool, which is now sufficiently mature to
be used at this scale, and the necessary time and effort to model the
heap structures Dafny (easy), express the invariants and operations
permitted on those heaps (relatively easy), and then coax Dafny to
admit — i.e. to satisfy itself, to prove — that the invariants are main-
tained (more difficult, but by no means insurmountable). We hope to
continue with this work, both to integrate formal verification ever
more tightly into programming language design, and to investigate
how tools such as Dafny can best support this approach. In this sense,
using Dafny has increased our confidence in Dala’s design: the next
steps are to extend the formal model to incorporate a gradual type
system, and to implement a concurrent testbed to experiment with
writing actual Dala programs.

The main disadvantage we found from using Dafny is that verifica-
tion always takes longer than any estimate, although when working
with Dafny, we often felt that just "one more assertion" would be
enough to verify our entire model. We consider this comes from the
auto-active / autonomic / opaque style of verification that is intrinsic
to Dafny. Dafny verification acts as a intermittent positive reinforce-
ment on a variable ratio schedule, like a slot machine, with the same
addictive qualities [54].

Acknowledgments
Thanks to Rustan Leino and James Wilcox, to Lindsay Groves, long-
time custodian of Formal Methods at VUW, to the many anonymous
reviewers of slightly worse versions of this paper. This work is sup-
ported in part by the Royal Society of New Zealand Te Apārangi
Marsden Fund Te Pūtea Rangahau a Marsden grants VUWU1815
and CRP2101, an Amazon Research Award, and Agoric Inc.

References
[1] Parastoo Abtahi and Griffin Dietz. 2020. Learning Rust: How Experienced Pro-

grammers Leverage Resources to Learn a New Programming Language. In CHI
Extended Abstracts. 1–8.

[2] Amazon. 2023. Automated reasoning. https://www.amazon.science/research-
areas/automated-reasoning. [Online], [Accessed: 2023-04-20].

[3] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program
Development.

[4] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. 2012. Grace:
the absence of (inessential) difficulty. In Onward! ’12: Proceedings 12th SIGPLAN
Symp. on New Ideas in Programming and Reflections on Software. ACM, New
York, NY, 85–98.

[5] David Blaser. 2019. Simple Explanation of Complex Lifetime Errors in Rust.
(2019). ETH Zürich.

[6] John Boyland. 2001. Alias burying: Unique variables without destructive reads.
Softw. Pract. Exp. 31, 6 (2001), 533–553. https://doi.org/10.1002/spe.370

[7] John Boyland, James Noble, and William Retert. 2001. Capabilities for Sharing: A
Generalisation of Uniqueness and Read-Only. In ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-22, 2001,
Proceedings (Lecture Notes in Computer Science, Vol. 2072), Jørgen Lindskov
Knudsen (Ed.). Springer, 2–27. https://doi.org/10.1007/3-540-45337-7_2

https://www.amazon.science/research-areas/automated-reasoning
https://www.amazon.science/research-areas/automated-reasoning
https://doi.org/10.1002/spe.370
https://doi.org/10.1007/3-540-45337-7_2

Dafny vs. Dala: Experience with Mechanising Language Design FTfJP ’24, September 20, 2024, Vienna, Austria

[8] Franck Cassez, Joanne Fuller, Milad K. Ghale, David J. Pearce, and Horacio
Mijail Anton Quiles. 2023. Formal and Executable Semantics of the Ethereum
Virtual Machine in Dafny. In Formal Methods - 25th International Symposium,
FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings (Lecture Notes in
Computer Science, Vol. 14000), Marsha Chechik, Joost-Pieter Katoen, and Martin
Leucker (Eds.). Springer, 571–583.

[9] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for Concur-
rency Control. In ECOOP.

[10] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for Trait Based
Reuse and Concurrency Control. Technical Report 2016-007.

[11] Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamaric, and Neha Rungta.
2022. Better Counterexamples for Dafny. In Tools and Algorithms for the Construc-
tion and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.).
Springer, 404–411. https://doi.org/10.1007/978-3-030-99524-9_23

[12] David Chisnall, Matthew Parkinson, and Sylvan Clebsch. 2021. Project
Verona. (2021). www.microsoft.com/en-us/research/project/-
project-verona.

[13] David Clarke, John M. Potter, and James Noble. 1998. Ownership Types for
Flexible Alias Protection. In OOPSLA.

[14] Sylvan Clebsch et al. 2015. Deny capabilities for safe, fast actors. In AGERE.
1–12.

[15] Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2020.
Can advanced type systems be usable? An empirical study of ownership, assets,
and typestate in Obsidian. OOPSLA (2020).

[16] CompCert. 2023. CompCert. https://github.com/AbsInt/CompCert. [Online],
[Accessed: 2023-04-20].

[17] Byron Cook. 2018. Formal Reasoning About the Security of Amazon Web
Services. In Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 38–47.
https://doi.org/10.1007/978-3-319-96145-3_3

[18] coq. 2023. The Coq Development Team. 2017. Coq, v.8.7. https://coq.inria.fr.
[Online], [Accessed: 2023-04-20].

[19] Joseph W. Cutler, Michael Hicks, and Emina Torlak. 2024. Improving the Stability
of Type Safety Proofs in Dafny. In Dafny Workshop at POPL.

[20] Dafny. 2023. dafny-lang. https://github.com/dafny-lang/dafny. [Online], [Ac-
cessed: 2023-04-20].

[21] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-
gary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science,
Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

[22] Jan de Muijnck-Hughes and James Noble. 2024. Colouring Flags with Dafny &
Idris. In Dafny Workshop at POPL.

[23] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
2020. Simple High-Level Code For Cryptographic Arithmetic: With Proofs,
Without Compromises. ACM SIGOPS Oper. Syst. Rev. 54, 1 (2020), 23–30.
https://doi.org/10.1145/3421473.3421477

[24] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics
Engineering with PLT Redex (1st ed.). The MIT Press.

[25] Kiko Fernandez-Reyes. 2021. Abstractions to Control the Future. Ph. D. Disserta-
tion. Uppsala University.

[26] Kiko Fernandez-Reyes, James Noble, Tobias Wrigstad, et al. 2020. Dalarna: A
Capability-Based Dynamic Language Design For Data Race Freedom. In FTfJP.

[27] Kiko Fernandez-Reyes, James Noble, Tobias Wrigstad, et al. 2021. Dala: A
Simple Capability-Based Dynamic Language Design For Data Race-Freedom. In
Submitted.

[28] Donald Gordon and James Noble. 2007. Dynamic Ownership in a Dynamic
Language. In DLS.

[29] Douglas E. Harms and Bruce W. Weide. 1991. Copying and Swapping: Influences
on the Design of Reusable Software Components. IEEE Trans. Softw. Eng. 17, 5
(May 1991), 424–435. https://doi.org/10.1109/32.90445 Publisher: IEEE Press.

[30] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015. IronFleet: proving
practical distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015,
Ethan L. Miller and Steven Hand (Eds.). ACM, 1–17. https://doi.org/10.1145/
2815400.2815428

[31] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End Security via
Automated Full-System Verification. In 11th USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-
8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX Association, 165–181. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel

[32] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

[33] John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented Languages.
In Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA’91), Sixth Annual Conference, Phoenix, Arizona, USA,
October 6-11, 1991, Proceedings, Andreas Paepcke (Ed.). ACM, 271–285.
https://doi.org/10.1145/117954.117975

[34] Vivian Hu. 2020. Rust Breaks into TIOBE Top 20 Most Popular Programming
Languages. (June 2020). InfoQ.

[35] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2020.
Safe Systems Programming in Rust: The Promise and the Challenge. Communica-
tions of the ACM (2020).

[36] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language (2nd
ed.).

[37] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal
verification of an OS kernel.. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October
11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,
207–220. https://doi.org/10.1145/1629575.1629596

[38] Paul Krill. 2021. Microsoft forms Rust language team. (Feb. 2021). InfoWorld.
[39] Claire Le Goues, K Rustan M Leino, and Michał Moskal. 2011. The Boogie

verification debugger. SEFM, LNCS 7041 (2011), 407–414.
[40] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, J.

Kiniry, and P. Chalin. 2007. JML Reference Manual. (February 2007). Iowa State
Univ. www.jmlspecs.org.

[41] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. 1993.
Object-Oriented Programming in the BETA Programming Language. Addison-
Wesley.

[42] K Rustan M Leino. 2013. Developing verified programs with Dafny. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 1488–1490.

[43] K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny. IEEE
Softw. 34, 6 (2017), 94–97. https://doi.org/10.1109/MS.2017.4121212

[44] K. Rustan M. Leino. 2023. Program Proofs. MIT Press.
[45] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM

52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814
[46] Mikael Mayer. 2023. How to use Dafny to prove type safety. In Dafny Blog.

dafny.org/blog/2023/07/14/types-and-programming-languages
[47] Sean McLaughlin, Georges-Axel Jaloyan, Tongtong Xiang, and Florian Rabe.

2024. Enhancing Proof Stability. In Dafny Workshop at POPL.
[48] Microsoft. 2023. The Dafny Programming and Verification Language. https:

//dafny.org/. [Online], [Accessed: 2023-04-20].
[49] Microsoft. 2023. Microsoft Research. https://www.microsoft.com/en-us/research/.

[Online], [Accessed: 2023-04-20].
[50] James Noble. 2024. Learn ’em Dafny. In Dafny Workshop at POPL.
[51] James Noble, David Clarke, and John Potter. 1999. Object Ownership for Dynamic

Alias Protection. In TOOLS.
[52] James Noble, David Streader, Isaac Oscar Gariano, and Miniruwani Samarakoon.

2022. More Programming Than Programming: Teaching Formal Methods in a
Software Engineering Programme. In NASA Symposium on Formal Methods.

[53] James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In
ECOOP. 158–185.

[54] James Noble and Charles Weir. 2024. The Faultless Way of Programming: Princi-
ples, Patterns, Practices, and Peculiarities for Verification in Dafny. In EuroPLoP.

[55] Matthew Parkinson. 2007. Class Invariants: the end of the Road?. In IWACO.
[56] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-

derstanding memory and thread safety practices and issues in real-world Rust
programs. In PLDI. 763–779.

[57] Walter Chalmers Smith. 1867. Immortal, Invisible.
[58] Ryan James Spencer. 2020. Four Ways To Avoid The Wrath Of The Borrow

Checker. (2020). justanotherdot.com.
[59] Zhenkun Yang, Wen Wang, Jeremy Casas, Pasquale Cocchini, and Jin Yang. 2023.

Towards A Correct-by-Construction FHE Model. IACR Cryptol. ePrint Arch.
(2023), 281.

https://doi.org/10.1007/978-3-030-99524-9_23
https://github.com/AbsInt/CompCert
https://doi.org/10.1007/978-3-319-96145-3_3
https://coq.inria.fr
https://github.com/dafny-lang/dafny
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1109/32.90445
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/117954.117975
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1145/1538788.1538814
dafny.org/blog/2023/07/14/types-and-programming-languages
https://dafny.org/
https://dafny.org/
https://www.microsoft.com/en-us/research/

	Abstract
	1 Introduction
	2 Background
	2.1 Ownership and Structured Heaps
	2.2 Dala: a simple concurrent language
	2.3 Dafny

	3 Modelling Dala with Dafny
	3.1 Dala Objects
	3.2 Dala Heaps
	3.3 Dala Ownership Hierarchy
	3.4 Modelling Operations
	3.5 Immutability
	3.6 Uniqueness
	3.7 Move vs Copy Semantics

	4 Conclusion
	Acknowledgments
	References

