
Using Functional Reactive Programming to Define Safe Actor
Systems

Nick Webster
Victoria University of Wellington

Wellington, New Zealand
nick.webster@vuw.ac.nz

Marco Servetto
Victoria University of Wellington

Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

Michael Homer
Victoria University of Wellington

Wellington, New Zealand
michael.homer@ecs.vuw.ac.nz

ABSTRACT
Functional Reactive Programming (FRP) is a powerful abstraction
for building deterministic concurrent systems. However, some pro-
grammers prefer a more imperative approach for certain tasks, and
that approach is required to implement some imperative algorithms.
The Actor Model provides an abstraction for building concurrent
systems in a more imperative way without as much of the chaos
typical of traditional shared-memory imperative concurrent pro-
gramming. While the Actor Model offers more structure than other
imperative approaches, it still suffers from nondeterminism due
to message-ordering and processing times. That makes actor sys-
tems hard to reason about, limiting their effectiveness for critical
tasks. We formally define an elegant multi-paradigm unification
of event-driven FRP constructs and the Actor Model. Our unifica-
tion enables an intuitive form of declarative programming that can
integrate imperative and declarative code within each other. We
use reference and object capabilities to tame imperative features:
reference capabilities track aliasing and mutability, and object ca-
pabilities track I/O. Notably, in our system expressions with deeply
immutable input behave deterministically. Additionally, capabilities
provide a boundary to allow nondeterministic code to intermingle
safely with deterministic code.

CCS CONCEPTS
• Computing methodologies → Concurrent programming
languages; Parallel programming languages; •Theory of com-
putation → Concurrency.

KEYWORDS
Functional programming, Functional reactive programming, Actor
model, Concurrency, Declarative programming, Type systems

ACM Reference Format:
Nick Webster, Marco Servetto, and Michael Homer. 2022. Using Functional
Reactive Programming to Define Safe Actor Systems. In Proceedings of
the 24th ACM International Workshop on Formal Techniques for Java-like
Programs (FTfJP ’22), June 7, 2022, Berlin, Germany. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3611096.3611098

1 INTRODUCTION
Parallel programming promises great performance improvements,
but it is also a source of undesired nondeterministic behaviour.

FTfJP ’22, June 7, 2022, Berlin, Germany
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
24th ACM International Workshop on Formal Techniques for Java-like Programs (FTfJP
’22), June 7, 2022, Berlin, Germany, https://doi.org/10.1145/3611096.3611098.

Functional Reactive Programming (FRP) and the Actor Model offer
two different ways to tame nondeterminism in concurrent and/or
distributed systems.

In the actor model, each actor sees the world sequentially, and
processes a single message at a time [1]. Actors may perform com-
putations, I/O, mutate their own private state, and send messages
to other actors when they process a message. However, messages
can be delivered in an unpredictable order and because actors can
mutate their private state, they can behave nondeterministically
based on message delivery ordering.

FRP comes inmany flavours but the common element is that each
approach provides a deterministic way to work with values that
change with respect to time [4]. The core concept in Event-Driven
FRP (E-FRP) is called a signal, with the definition: Signal 𝛼 ≈
Time -> 𝛼[13]. With E-FRP the Time input can be misleading to
think about because it does not refer to any real monotonic clock;
Time is defined as progressing every time an event occurs. An E-FRP
program generally consists of a series of signal functions that accept
a Signal a and transform it into a Signal b. Signal functions can
deterministically run in parallel (assuming glitch freedom) because
immutability shields them from observing any parallelism. A key
issue with FRP systems is a lack of expressivity for working with
the “awkward squad” of tasks, like I/O and concurrency [14]. To
resolve that issue, some E-FRP languages have to rely on an external
environment written in a different language to perform side effects
and provide nondeterministic inputs [16].

1.1 FRJ
If we think of each event in a signal as a series of messages and each
signal function as an actor’s message handler, we can represent an
E-FRP program deterministically with the Actor Model. Conversely,
if each message was a signal that only has one event and every
actor’s message handler was a signal function, we can represent a
pure actor system with an E-FRP program. The duality between E-
FRP and the Actor Model is the foundation of Featherweight Reactive
Java (FRJ), our object calculus that unifies E-FRP constructs with
the Actor Model to enable the definition of safe actor systems.

Events and messages are identical in FRJ, so the term “event”
from E-FRP and the term “message” from the Actor Model can be
used interchangeably when talking about FRJ’s signals and actors.
FRJ’s signals are applicative functors represented by a linked data-
structure: [e; e′]. The head of this data-structure is an expression
that evaluates to the current value of the signal, and the tail is an
expression that will evaluate to a new linked data-structure with a
head expression that evaluates to the next value of the signal, and
so on. The laziness or strictness of the evaluation of these expres-
sions isn’t defined by our formalism. The only requirements on the

https://doi.org/10.1145/3611096.3611098
https://doi.org/10.1145/3611096.3611098

FTfJP ’22, June 7, 2022, Berlin, Germany Nick Webster, Marco Servetto, and Michael Homer

evaluation of these expressions is that the runtime must finish eval-
uating the head expression before starting to evaluate the tail and
that the evaluation happens asynchronously. Our signal’s internal
data structure can be introspected using the conventional head(_)
and tail(_) syntax. However, users will rarely directly interact
with this abstraction and will mostly use lifted method calls. Most
useful abstractions that rely on directly using head, tail, and the
underlying representation of FRJ’s signals can be encapsulated into
the body of generic library methods. Lifted method calls have a spe-
cial syntax: a.@m(b,c), where b and c are signals. This syntax sends
the actor a a message causing the (asynchronous) computation
of a.m(head(b),head(c)) and then triggers a.@m(tail(b),tail(c));
until either b or c terminates.

Consider the following class:

1 capability class FuelSensor { Int resAddrP; Int resAddrF;

2 mut method Num pressure() =

3 new PciBus(this.resAddrP).etc(...);

4 mut method Num fuel() =

5 new PciBus(this.resAddrF).etc(...);

6 }

7 class Format {

8 method String of(Num f, Num p) = f+"% at "+p+"Pa"; }

Given a FuelSensor object (fs), we could write the conventional
method call new Format().of(fs.fuel(),fs.pressure()), to com-
pute the status string once. Using FRJ’s lifted method calls, we can
write the following in an FRP style:

1 @Num pressures = new FuelSensor(0x12,0x34).@pressure();

2 new Format().of(new FuelSensor(0x12,0x34).@fuel(),

3 pressures);

That creates a signal with messages containing the formatted
status string. As the readings on fuel and pressure change, the
formatted string will change too. We can also write code in an
actor style, by sending individual events to FuelSensor. This code
sends the messages, fuel and pressure, to the FuelSensor actors
one time. The two FuelSensor actors will reply with a Num message
each. When both messages are handled, Format receives a single
message asking to produce the formatted string, parameterised
over the fuel percentage and the pressure. The expressions inside
signals are computed in parallel and execution is deferred. Thus,
implementing a fork–join is trivial in FRJ:

1 @Int part1=@[x.computePart1();@[]],

2 Int part2=x.computePart2(),

3 head(part1)+part2;

The fork-join works because the creation of part1 does not block
because its head is being evaluated in parallel. The head(part1)

call would block until the expression had been computed and the
message was ready.

With actor frameworks like Akka [9], a distinction is made be-
tween methods in an actor object and message handlers. However,
because FRJ supports lifting of methods into signal functions, and
because of our unification of actors and FRP, a lifted method can
be seen as both a signal function and a message handler. Therefore,
any object that can have a method lifted is also an actor in FRJ.

cap F capability | ∅
CD F cap class C implements C{ F M;}

| cap interface C extends C{MH1;. . .MH𝑛;}

F F T f;
T F mdf C | @T
MH F mdf method T m (T1 x1 . . . T𝑛 x𝑛)
M F MH = e;
e F x | e.@m(e) | e.f | e1.f =e2 | new 𝐶(e) | T x = e1, e2

| e.@m(e) | @[e;e′] | @[] | head(e) | tail(e) | v
v F L | S | [v;S]
E F □ | E.@m(e) | v.@m(v E e) | E.f | E.f =e | v.f = E

| new 𝐶(v E e) | T x = E, e | E.@m(e)
| v.@m(v E e) | head(E) | tail(E)

mdf F imm | mut | capsule | read
Ξ F S[e1;e2]
𝜇 F 𝜌1 . . . 𝜌𝑛
𝜌 F L ↦→ 𝐶(v) Ξ
Γ F x1 : T1 . . . x𝑛 : T𝑛
Σ F L1 : C1 . . . L𝑛 : C𝑛

Figure 1: The grammar of FRJ

2 FORMAL MODEL
The values (v) in FRJ consist of memory addresses (L), signal refer-
ences (S), and evaluated messages ([v;S]). Our memory is modelled
as a series of 𝜌 , which are mappings from memory addresses to
objects and their mailboxes. All messages (Ξ) are tagged with a
signal reference. The shape of the reduction is: 𝜇 | e → 𝜇 ′ | 𝑒 ′. We
use 𝑐𝑙𝑎𝑠𝑠 (C) to denote the class declaration (CD) for the class C and
𝑓 𝑖𝑒𝑙𝑑𝑠 (C) to denote the list of the fields for the class C. Additionally,
‘_’ is used as a placeholder in the rules and can match any syntactic
term.

2.1 Well Formedness
Using the auxiliary notation, our well-formedness rules are as fol-
lows:

• All classes and interfaces are uniquely named.
• All methods in a given class are uniquely named.
• All fields in a given class are uniquely named.
• All parameters in a given method are uniquely named and
are not called this .

• A capsule binding can be used zero or one time in an expres-
sion.

• All S labelling a Ξ inside the memory are unique.
• Fields can only have the type modifiers: imm or mut .
• Types containing @ must have the imm modifier.
• Classes can only implement interfaces.
• Interfaces can only extend other interfaces.
• @[] is not in 𝑑𝑜𝑚𝑆 (𝜇) (defined below).
• 𝜇 | 𝑒 is well formed if all 𝐿 in 𝑒 are in 𝑑𝑜𝑚(𝜇) (defined below)
and all 𝑢𝑠𝑒𝑑𝑆 (𝑒) ∪ 𝑢𝑠𝑒𝑑𝑆 (𝜇) are in 𝑑𝑜𝑚𝑆 (𝜇).

𝑑𝑜𝑚(𝜇) is the conventionally defined set of all keys (𝐿) in the
memory (𝜇). 𝑑𝑜𝑚𝑆 (𝜇) is the set of all S labelling a Ξ inside the
memory, and 𝑢𝑠𝑒𝑑𝑆 (𝜇) (i.e. all signals reachable or executing) is
defined as follows:

Using FRP to Define Safe Actor Systems FTfJP ’22, June 7, 2022, Berlin, Germany

• 𝑢𝑠𝑒𝑑𝑆 (𝜇) = 𝑢𝑠𝑒𝑑𝑆 (𝜇, 𝜌1) ∪ . . . ∪ 𝑢𝑠𝑒𝑑𝑆 (𝜇, 𝜌𝑛),
with 𝜇 = 𝜌1 . . . 𝜌𝑛

• 𝑢𝑠𝑒𝑑𝑆 (L ↦→ 𝐶(v1 . . . v𝑘) Ξ1 . . .Ξ𝑛) =
𝑢𝑠𝑒𝑑𝑆 (v1) ∪ . . . ∪𝑢𝑠𝑒𝑑𝑆 (v𝑘) ∪𝑢𝑠𝑒𝑑𝑆 (Ξ1) ∪ . . . ∪𝑢𝑠𝑒𝑑𝑆 (Ξ𝑛)

• S ∈ 𝑢𝑠𝑒𝑑𝑆 (S′[e1;e2]) = 𝑢𝑠𝑒𝑑𝑆 (e1) ∪ 𝑢𝑠𝑒𝑑𝑆 (e2) if S ≠ S′

• S ∈ 𝑢𝑠𝑒𝑑𝑆 (e) if S is a sub-expression of e.

2.2 Reduction Rules
L ↦→ 𝐶(v1 . . . v𝑛) _ in 𝜇 T1 f1 . . . T𝑛 f𝑛 = 𝑓 𝑖𝑒𝑙𝑑𝑠 (C)

𝜇 | 𝐿.𝑓𝑖 → 𝜇 | 𝑣𝑖
(fAccess)

_ T0 f0 . . . T𝑛 f𝑛 = 𝑓 𝑖𝑒𝑙𝑑𝑠 (C)

𝜌0 = L ↦→ C (v v0 . . . v𝑛) Ξ

𝜌1 = L ↦→ C (v v v1 . . . v𝑛) Ξ
𝜇, 𝜌0 | L.f0 = v → 𝜇, 𝜌1 | v (fUpdate)

𝜇 | new 𝐶(v1 . . . v𝑛) → 𝜇, L ↦→ 𝐶(v1 . . . v𝑛) ∅ | L (new)

L ↦→ 𝐶(v)Ξ in 𝜇

_ method _ m (_ x1 . . . _ x𝑛) = e; in 𝑐𝑙𝑎𝑠𝑠 (C)
𝜇 | L.@m(v1 . . . v𝑛) →

𝜇 | e[this = L, x1 = v1 . . . x𝑛 = v𝑛]

(mCall)

𝜇 | 𝑇 x=v, e → 𝜇 | e[x = v] (let)

𝜇 | 𝑒 → 𝜇 | 𝑒 ′

𝜇 | E [𝑒] → 𝜇 | E [𝑒 ′]
(E)

𝜇 | e → 𝜇 | e′

𝜇, 𝜌 S[E[e];e0] | e1 → 𝜇, 𝜌 S[E[e′];e0] | e1
(EHead)

𝜇 | e → 𝜇 | e′

𝜇, 𝜌 S[v;E[e]] | e1 → 𝜇, 𝜌 S[v;E[e′]] | e1
(ETail)

Field updates, field access, object construction and method call
are standard. All objects in FRJ hold an initially empty mailbox
for messages. Contextual rules (E, EHead, and ETail) guide the
parallel reduction: (E) allows us to reduce the main expression,
while (EHead) reduces the current value of a signal. When the
value is produced, rule (ETail) executes the expression creating the
next signal node. Memory (𝜇) is a set, so the rules can work on any
𝜌 in 𝜇. The 𝜌 non-terminal has a list of Ξ at its end; thus by writing
𝜇, 𝜌 S[e;e′] we are selecting the last message of an arbitrary object
in memory.

𝜇 | head([v;S]) → 𝜇 | v (head)

𝜇 | tail([v;S]) → 𝜇 | S (tail)

𝜇 | tail(@[]) → 𝜇 | @[] (tailEmpty)

either e = E[head(@[])]
or e = v and e0 = E[head(@[])]

𝜇, 𝜌 S[e;e0] | e1 → (𝜇, 𝜌 | e1) [S = @[]] (empty)

𝜇, 𝜌 S[v;S′] | e1 → (𝜇, 𝜌 | e1) [S = [v;S′]]
(complete)

When a message has been completely computed, rule (complete)
removes the message from the memory, and replaces all of the ref-
erences to S with [v;S′]. So, while head(S) will cause the reduction
to get stuck, head([v;S]) can reduce. Therefore, the rule (complete)
enables a form of synchronisation between the messages and their
consumers.

When themessage execution tries to access the head of the empty
signal, rule (empty) terminates the signal, removes the message S
and replaces all occurrences of S with @[]. This rule also allows
the computation of a signal to be cancelled deterministically by
explicitly using !head(@[])!.

𝜇 | @[e1;e2] → 𝜇, L ↦→ Object() S[e1;e2] | S (explicitS)

e0 = L.@m(v1 . . . v𝑛)

e1 = L.@m(head(v1) . . . head(v𝑛))

e2 = L.@m(tail(v1) . . . tail(v𝑛))

𝜇, L ↦→ 𝐶(v) Ξ | 𝑒0 → 𝜇, L ↦→ 𝐶(v) S[e1;e2]Ξ | S
(liftS)

This group of rules (explicitS and liftS) deals with the creation
of signals.

For the explicit creation of signals, the rule (explicitS) reduces
signal constructors into a message (Ξ) and places it on a new empty
actor. The signal constructor expression is then replaced with the
fresh signal (S) that was just associated with the message.

The alternative way to create signals in FRJ is through lifting
methods. Rule (liftS) reduces lifted method calls by creating a Ξ that
gets placed onto the receiver containing a head of the traditional
method call with arguments of the head of all of its inputs. The tail
of this new Ξ will be the same lifted method call, but with the tail
of all of the inputs as the inputs for the new lifted call. Effectively,
the method now reacts to its inputs.

𝜇, 𝜇 ′ | e → 𝜇 | e
(garbage)

Rule (garbage) gets rid of the part of memory that is unreachable
starting from the main expression. Note that we cannot arbitrar-
ily split the memory. We can only split it in such a way that the
resulting 𝜇 | e is well formed. An important consequence of our
garbage collection rule is that messages can be collected too, even
during their computation. However, due to our well-formedness
rules, messages can only be collected if the receiver actor object is
collected, and an object can only be collected if there are no other
references to its address and to any of the S in its mailbox.

2.3 Reference and Object Capabilities
Parallel computation is inherently part of FRP and actor systems.
FRJ uses reference capabilities to tame the nondeterminism that
would otherwise arise from aliasing andmutability. FRJ supports the
three most common reference capabilities: the default imm (deeply
immutable); mut (mutable) and read (readonly) the common su-
pertype of both imm and mut. In addition, FRJ supports capsule; a
reference that dominates its ROGmut (mutable reachable object
graph) [7]. For each mut or capsule reference we can compute

FTfJP ’22, June 7, 2022, Berlin, Germany Nick Webster, Marco Servetto, and Michael Homer

ROGmut (𝐿) = 𝐿 by following all the mut fields. Formally:
𝐿 ∈ ROGmut (𝐿, 𝜇)
𝐿𝑖 ∈ ROGmut (𝐿, 𝜇) if
L ↦→ 𝐶(𝐿1 . . . 𝐿𝑛), _ ∈ 𝜇, 𝑓 𝑖𝑒𝑙𝑑𝑠 (𝐶) = 𝑇1 . . .𝑇𝑛 ∧𝑇𝑖 = mut_

𝐿2 ∈ ROGmut (𝐿0, 𝜇) if
𝐿1 ∈ ROGmut (𝐿0, 𝜇) ∧ 𝐿2 ∈ ROGmut (𝐿1, 𝜇)

ROGmut (_, _) is only defined for mut and capsule references; it is
undefined for read and imm ones.

All references without an explicit capability are imm. Recalling
the FuelSensor class from earlier, we saw the use of two different ref-
erence capabilities: imm, mut. If we look at the pressure method: mut
method Num pressure() = new PciBus(this.resAddrP).etc(..)

The receiver (this) is of type mut FuelSensor reference and the
return value will be an imm Num reference. This means that to call
this method on an object, a mut FuelSensor reference is required.

A capsule reference is the sole access point to a group of mutable
objects. capsule references can be obtained when the aliasing is
under control. The whole ROGmut from a capsule reference can
only be reached from that specific capsule reference. Note that
fields can only hold imm and mut references. Reference capabilities
have the following subtyping relationship:
read ≤ _ ≤ capsule

All of the reference capabilities are subtypes of capsule and
supertypes of read. Thanks to this a capsule reference can be con-
verted to an imm or a mut reference. Note that mut and imm are not
comparable with each other.

For example, we can extend the FuelSensor class from earlier
with the following methods:
1 capability class FuelSensor { /* ... */

2 capsule method @Num throttle(@Bool tick) =

3 this.@_throttle(tick);

4 mut method Num _throttle(Bool tick) = this.fuel();

5 }

The throttlemethod synchronises reading from the sensor with
a clock signal, enabling us to keep readings from all sensors in sync
and throttle the signal throughput. Line 3 lifts the _throttlemethod.
throttle is a capsule method because the type system requires lifted
methods on capability objects to have imm or capsule receivers. Line
3 is very interesting. The “tick” from the clock is discarded but the
argument is still important because the method is now reacting to
the clock, synchronising with it.

The main advantage of reference capabilities over older forms of
aliasing control [2, 8], is that references can be promoted/recovered
to a subtype when the right conditions arise. Multiple method types
offers one way to handle promotion/recovery. In the case of FRJ
every method has two additional types, one replacing mut with
capsule and another replacing mut with capsule and read with imm:

methTypes(T0,m) = {
T0 . . . T𝑛 ↦→ T ,
(T0 . . . T𝑛 ↦→ T) [mut = capsule],
(T0 . . . T𝑛 ↦→ T) [mut = capsule , read = imm]

} iff
mdf method T m (T1 x1 . . . T𝑛 x𝑛) _ ∈ 𝑐𝑙𝑎𝑠𝑠 (C)
T0 = mdf ′ C mdf ′ ≤ mdf

Where the notation [mut = capsule], replaces all of the mut

modifiers with capsule .

For example, consider the following method signature, that could
be a getter for a mut List field: read method read List getList();

The following additional method type will be available in the type
system: method List getList();, enabling an imm List to be re-
turned if the receiver is imm.

Given the following method signature, that could be applying
an in-place transformation algorithm on a list:
method mut List transform(mut List list, read Algo algo)

The following additional method type will be available in the type
system:

method capsule List transform(capsule List list,read Algo

algo)

In this way simple mut->mut methods can transparently work on
capsules. Note how read parameters are also transparently allowed.

Many languages allow any piece of code to do I/O, typically
by indirectly calling native static methods. If static methods are
forbidden, we can get a more pure OO setting where all behaviour
is obtained by method calls to objects. Put simply, if there’s no
object to do the task, the task can’t be done. This principle is the
key idea behind object capabilities [6, 11]. One approach to object
capabilities is having a privileged standard library that can freely
perform I/O and has a security model for restricting access to its
privileged methods. FRJ places the restrictions at the language level
instead of the possibly-buggy library level. Some classes are labelled
as capability, and only privileged expressions (mut methods in
capability classes/the main method) can instantiate a capability
class. Our reduction rules do not model I/O interaction but in a
realistic implementation of FRJ we would expect a way to run native
code in mut methods of capability classes. In this way, any method
that only has immutable references for parameters is guaranteed
to be deterministic. We can be sure of the guarantee because:

(1) New mut objects can be created anywhere, but new mut

capability objects can only be created in the main expression
or mut methods in capability classes.

(2) We do not allow any static variables, so you can only access
objects through explicit channels like the parameters and
the receiver.

(3) The ROG of an imm reference does not contain any non-imm
references, so mut capability objects cannot be accessed.

2.4 Type Rules
FRJ’s typing environment has three components: Γ, the mapping
between variables and types; Σ, the mapping between a object loca-
tions and class names; and cap, a flag identifying if the expression
is allowed to instantiate capability classes.

We will use the notation capOf (C) and capOf (T) to denote the
capability modifier of a given class. For simplicity’s sake, the 𝑐𝑙𝑎𝑠𝑠 ,
𝑓 𝑖𝑒𝑙𝑑𝑠 , and capOf helper functions can also take a T value as an
argument and consider the C inside of it.

cap; Σ; Γ ⊢ x : Γ(x) (x)

cap; Σ; Γ ⊢ e : T ′ ⊢ T ′ ≤ T
cap; Σ; Γ ⊢ e : T (sub)

Using FRP to Define Safe Actor Systems FTfJP ’22, June 7, 2022, Berlin, Germany

cap; Σ; Γ ⊢ L : mdf Σ(L) (L)

Variable typing and subsumption are standard. We omit the sub-
typing judgement, which would be standard but with the addition
of signal types; those would require the level of indirection to be
the same, i.e. @T ′ ≤ @T if T ′ ≤ T but @@T ′ ≰ @T .

The rule (L) types memory references as the class of the object
it points to and the modifier of the reference. Our rules are very
declarative; a more explicit approach could instrument the expres-
sions to keep track of the pair L:mdf during reduction. This could
be needed to complete a proof of soundness. Note that 𝐿s are only
run-time expressions; thus rule (L) will never happen during static
type checking.

cap; Σ; Γ ⊢ e : mdf C 𝑓 𝑖𝑒𝑙𝑑𝑠 (C) = T1 f1 . . . T𝑛 f𝑛
cap; Σ; Γ ⊢ e.f𝑖 : T𝑖 +mdf

(fAccess)

cap; Σ; Γ ⊢ e1 : mutC 𝑓 𝑖𝑒𝑙𝑑𝑠 (C) = T1 f1 . . . T𝑛 f𝑛
cap; Σ; Γ ⊢ e2 : T𝑖

cap; Σ; Γ ⊢ e1.f𝑖=e2 : T𝑖
(fUpdate)

Field access and field update are conventional with the exception
of modifiers being applied to the result of a field access, and the
added requirement that the receiver of a field update must be mut .
FRJ’s field access modifier composition rules are as follows:

• @ mdf C + imm = @ imm C
• @ mdf C + mut = @ mdf C
• @ mdf C + capsule = @ mdf C
• @ mut C + read = @ read C
• @ imm C + read = @ imm C

For example, with a field access, if the receiver had the read mod-
ifier and the field had the imm modifier, the result would be imm.
Alternatively, if the receiver was read and the field was mut, the
result would be read.

T1 f1 . . . T𝑛 f𝑛 = 𝑓 𝑖𝑒𝑙𝑑𝑠 (C) cap; Σ; Γ ⊢ e𝑖 : T𝑖
either capOf (C) = ∅ or cap = capability

cap; Σ; Γ ⊢ new 𝐶(e1 . . . e𝑛) : mut C
(new)

Object instantiation is also mostly conventional, defining the
type of the expression as a mut reference to the object being in-
stantiated. The major difference is that if the class is marked as
capability, then the object can only be created in the main method
or in a mutmethod of another capability class. The rules for capabil-
ity methods can be found in the rule (method). Since a well-formed
memory must be a map, this rule implicitly requires that 𝐿 is fresh.
The same consideration will hold for the fresh 𝑆 in rules (explicitS,
liftS).

T1 f1 . . . T𝑛 f𝑛 = 𝑓 𝑖𝑒𝑙𝑑𝑠 (C)
cap; Σ; Γ ⊢ e𝑖 : T𝑖 [mut = mdf]

either capOf (C) = ∅ or cap = capability

mdf = {imm, capsule}
cap; Σ; Γ ⊢ new 𝐶(e1 . . . e𝑛) : mdf C

(new+)

The rule (new+) enables a more flexible creation of objects. They
can be imm if all the fields are initialised with imms/capsules, or can

be capsule if all the mut fields are initialised with capsules. This is
safe because fields can only be imm or mut. imm fields can remain
unchanged and if all mut fields are encapsulated, the newly created
object and its reachable object graph is encapsulated. This is not
the only way to create capsules, multiple method types can also be
used: every method that returns a mut but does not receive any mut

arguments implicitly returns a capsule too.

cap; Σ; Γ ⊢ e0 : T0 cap; Σ; Γ, x : T0 ⊢ e1 : T1

cap; Σ; Γ ⊢ T0 x=e0, e1 : T1
(let)

The let typing rule is conventional.

T0 . . . T𝑛 ↦→ T in methTypes(T0,m)
cap; Σ; Γ ⊢ e𝑖 : T𝑖

cap; Σ; Γ ⊢ e0 .@m(e1 . . . e𝑛) : T (mCall)

cap; Σ; Γ ⊢ e0 : T0 cap; Σ; Γ ⊢ e𝑖 : @T𝑖 ∀𝑖 ∈ 1..𝑛
𝑇0 . . . T𝑛 ↦→ T in methTypes(T0,m)

validActor (T0)
cap; Σ; Γ ⊢ e0 .@m(e1 . . . e𝑛) : @T (mCall@)

Our method call type rule is mostly conventional but relies on
methTypes, and thus is more flexible. The major difference between
rule (mCall) and rule (mCall@) is that all of the argument types are
lifted (@T) and the receiver must be a validActor : either the receiver
is immutable (T0 = imm _) or the receiver is a deeply encapsulated
capability instance (capOf (T0) = capability and T0 = capsule _).

Actors may receive messages in any order; while immutable
actors cannot be influenced by such order, a mutable actor (even if
it is fully encapsulated) may use the messages to update the value
of a field. If such an actor could be freely created, then we could
use it to forge a no-args method with a nondeterministic result.

cap; Σ; Γ[only imm , capsule] ⊢ e1 : T
cap; Σ; Γ [only imm , capsule] ⊢ e2 : @T

cap; Σ; Γ ⊢ @[e1;e2] : @T (fullSignal)

The rule (fullSignal) is for a signal constructor.
The notation Γ [only imm, capsule] = Γ′ creates a new Γ′ environ-
ment with only imm and capsule bindings. This enforces that only
imm and capsule variables can be captured by the expressions in-
side the signal.

cap; Σ; Γ ⊢ @[] : @T (emptySignal)

The rule (emptySignal) is similar to the conventional rule for typing
empty lists, as the empty signal can assume any signal type, similar
to how null is valid for any boxed type in Java.

cap; Σ; Γ ⊢ e : @T
cap; Σ; Γ ⊢ head(e) : T (head)

cap; Σ; Γ ⊢ e : @T
cap; Σ; Γ ⊢ tail(e) : @T (tail)

overrideOk(C ′,MH𝑖) ∀C ′ ∈ C

either cap = capability or capOf (C ′) = ∅ ∀C ′ ∈ C

⊢ cap interface C extends C{MH1 . . .MH𝑛} OK
(iOk)

FTfJP ’22, June 7, 2022, Berlin, Germany Nick Webster, Marco Servetto, and Michael Homer

cap;C ⊢ M𝑖 overrideOk(C ′,M𝑖) ∀C ′ ∈ C

dom(C ′) ⊆ dom(C) ∀C ′ ∈ C

either cap = capability or capOf (C ′) = ∅ ∀C ′ ∈ C

⊢ cap class C implements C { F K M1 . . .M𝑛 } OK
(cOk)

cap′; ∅; this : mdf C, x1 : T1 . . . x𝑛 : T𝑛 ⊢ e : T
cap′ = ∅ iff cap = ∅ or mdf ≠ mut

cap,C ⊢ mdf method T m (T1 x1 . . . T𝑛 x𝑛) = e;
(mOk)

Those last three rules type interfaces, classes, and methods. In
particular, rule (method) types all mutmethods in capability classes
as capability methods. We omit the trivial but tedious definition for
overrideOk(C ′,MH𝑖), checking if a method signature can override a
potential method with the same name defined in the super interface:
if another method with the same name exists, the two method types
must be identical.

3 EXAMPLE
We discussed the capability class FuelSensor earlier, which directly
connects to the hardware (using PciBus) and lifts the hardware
sensor to a signal with the method throttle, allowing us to syn-
chronise the sensor input across any number of signals using the
same clock.

The produced signal from throttle is of type @Num; having no
connection with FuelSensor type or any capability restriction. Thus,
we can use deterministic and pure code like Smooth to manipulate
it.

1 class Smooth { method @Num of(@Num ns) =

2 new Math().@average(ns, tail(ns)); }

3 //Using Smooth to reduce noise on a single sensor

4 @Bool t = new Std().clock(50), /* clock cycle */

5 capsule FuelSensor o2 = new FuelSensor(0x1234, 0x12),

6 @Num res = new Smooth().of(o2.throttle(t)),

Relying on a conventional Num Math.average(Num,Num) function,
Smooth.of smooths out the noise from the signal: the current value
of the signal is going to be the average of the former value and the
current one. The iconic FRP function foldp (fold over the past) [5]
can similarly be implemented by explicitly using tail(_).

In the same way we can smooth the signal coming from a single
sensor, we can take a consensus vote from the signals of multiple
hardware sensors in order to make our system more reliable in case
of hardware failure.

1 @Bool t = new Std().clock(50), /* clock cycle */

2 @Num o2s1 = new Smooth().of(

3 new FuelSensor(0x12, 0x34).throttle(t)),

4 @Num o2s2 = new Smooth().of(

5 new FuelSensor(0x56, 0x78).throttle(t)),

6 @Num o2s3 = new Smooth().of(

7 new FuelSensor(0x91, 0x92).throttle(t)),

8 @Number o2 = new MajorityVote().@of(o2s1,o2s2,o2s3),

The following class LaunchControl shows a useful programming pat-
tern: an object where all of its fields are signals can combine those

signals into a single one simply by providing a method combining
the individual signal values into the result.

1 class LaunchControl { @Bool approved;

2 @Num o2; /* Oxygen% */ @Num rp1; /* fuel% */

3 method @Bool canLaunch() = this.@_canLaunch(this.

approved, this.o2, this.rp1);

4 method Bool _canLaunch(Bool approved, Num o2, Num rp1) =

5 approved && o2 == 100 && rp1 == 100; }

With all of our inputs configured, we can now launch our rocket!

1 capability interface Engine {

2 capsule method Status igniteWhen(Bool shouldIgnite); }

3 class Rocket { mut Engine engines; LaunchControl control;

4 capsule method @Status launch() = this.engines.

@igniteWhen(this.control.canLaunch()); }

5 main = /*...*/, new Rocket(/*..*/).launch();

4 RELATEDWORK
This work largely builds on top of an honours report on unifying
actors with FRP [19], which additionally features a prototype com-
piler for a more primitive version of the formal model described
in this paper. Additionally, 42 [7, 15] is a strong inspiration for
this work and shares a similar kind of multi-method promotion
approach, reference capabilities, and uses object capabilities for
controlling I/O. However, 42 doesn’t use actors or signal functions
as its main abstraction to support parallelism.

XFRP [16] offers an interesting model for executing pure FRP on
an actor-based runtime. Using XFRP would be a similar experience
to using FRJ without object capabilities and with every reference
being imm. The language has fewer sources of nondeterminism to
control because it delegates side effects to components that are
external to the program.

In 2019 Lohstroh et al. [10] proposed a new actor system that
uses reactors. Reactors declare their inputs and outputs, react to
messages, and are connected with a ‘composite’ main function
that builds the graph. The ‘reactor network’ can offer stronger
guarantees for message delivery/processing order than traditional
shared-memory actor libraries like Akka [9]. However, the system
cannot enforce properties on behaviour like the absence of data
races without enforcing strict ordering requirements.

The ‘actor-reactor model’ (ARM) [18] replaces actors with reac-
tors and creates a joint model where actors can be nondeterministic.
The reactors in the ARM should not be confused with the Lohstroh
et al.’s reactors; ARM’s reactors are always pure and deterministic.
Notably the ARM’s reactors are what the authors call “strongly
reactive”, which means that they are limited to performing𝑂 (1) op-
erations. FRJ does not have the distinction between ‘actors’ and ‘re-
actors’. FRJ’s unified approach does still make a distinction between
deterministic and nondeterministic actors using object capabilities,
but a pure FRJ actor is able to perform more complex tasks than an
ARM reactor because we do not require signal functions/message
handlers to be strongly reactive.

Pony is a programming language for creating shared-memory ac-
tor systems. Pony offers reference and object capabilities to provide
guarantees for their shared-memory actor model implementation
[17]. Pony’s reference capabilities mostly map to the ones used in

Using FRP to Define Safe Actor Systems FTfJP ’22, June 7, 2022, Berlin, Germany

FRJ and references can only be sent to other actors when it would be
indistinguishable from deep-copying them into a message. Unlike
FRJ, Pony’s object capability system is implemented at the library
level instead of at the language level with capability classes.

5 CONCLUSIONS AND FUTUREWORK
In this foundational work, we defined FRJ, a core OO calculus mod-
elling both FRP and actor systems. FRJ supports traditional impera-
tive field updates and I/O, but it keeps control of side effects using
reference and object capabilities. The work on FRJ is far from com-
plete, we plan to formally model generics and lambdas, and to study
possible efficient implementation strategies. Garbage collectionmay
require particular attention since it can stop running computations.
We plan to relax the restriction on the state of mutable actors, and
potentially to look into applying concepts from arrowized FRP
[3, 12] into FRJ. Our formalism doesn’t place any requirements on
the scheduling or implementation of the actors/signals although
we would expect a reasonable implementation’s scheduler to slow
down/pause signal processing appropriately to the rate of consump-
tion of the signal. The best ways to do scheduling and back pressure
with FRJ is a potential area of future research. FRJ’s signals can
be finite or infinite, and they can either be connected with real
world devices or just manipulate objects in memory. FRJ’s signals
can be dynamically created and wired while preserving equational
reasoning for all expressions that only take in immutable values
as input. Ultimately, FRJ allows for smooth navigation between
FRP and the Actor model’s approaches to concurrent programming
enabling us to get the best of both worlds.

REFERENCES
[1] Gul A Agha. 1985. Actors: Amodel of concurrent computation in distributed systems.

Technical Report. Massachusetts Inst of Tech Cambridge Artificial Intelligence
Lab. https://doi.org/1721.1/6952

[2] John Boyland. 2003. Checking interference with fractional permissions. In Inter-
national Static Analysis Symposium. Springer, 55–72. https://doi.org/10.1007/3-
540-44898-5_4

[3] Guerric Chupin and Henrik Nilsson. 2019. Functional Reactive Programming,
restated. In Proceedings of the 21st International Symposium on Principles and
Practice of Programming Languages 2019. 1–14.

[4] Evan Czaplicki. 2012. Elm: Concurrent FRP for functional guis. Senior thesis,
Harvard University (2012).

[5] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. ACM SIGPLAN Notices 48, 6 (2013), 411–422. https:
//doi.org/10.1145/2491956.2462161

[6] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David Wagner. 2008. Ver-
ifiable functional purity in Java. In Proceedings of the 15th ACM conference
on Computer and communications security. 161–174. https://doi.org/10.1145/
1455770.1455793

[7] Paola Giannini, Marco Servetto, Elena Zucca, and James Cone. 2019. Flexible
recovery of uniqueness and immutability. Theoretical Computer Science 764 (2019),
145–172. https://doi.org/10.1016/j.tcs.2018.09.001

[8] John Hogg. 1991. Islands: Aliasing protection in object-oriented languages. In
Conference proceedings on Object-oriented programming systems, languages, and
applications. 271–285. https://doi.org/10.1145/117954.117975

[9] Lightbend Inc. [n. d.]. Akka: build concurrent, distributed, and resilient message-
driven applications for Java and Scala. Retrieved 2021-12-30 from https://akka.io/

[10] M. Lohstroh and E. A. Lee. 2019. Deterministic Actors. In 2019 Forum for Specifica-
tion and Design Languages (FDL). 1–8. https://doi.org/10.1109/fdl.2019.8876922

[11] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. 2017.
A Capability-Based Module System for Authority Control. In 31st European
Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 74), Peter Müller (Ed.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 20:1–20:27.
https://doi.org/10.4230/LIPIcs.ECOOP.2017.20

[12] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional reactive
programming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell. 51–64.

[13] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Reactive
Programming, Refactored. SIGPLAN Not. 51, 12 (sep 2016), 33–44. https://
doi.org/10.1145/3241625.2976010

[14] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. IOS Press, 47–96.
https://www.microsoft.com/en-us/research/publication/tackling-awkward-
squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-
haskell/

[15] Marco Servetto. [n. d.]. 42 - Metaprogramming as default. Retrieved 2022-04-13
from https://l42.is/

[16] Kazuhiro Shibanai and Takuo Watanabe. 2018. Distributed functional reactive
programming on actor-based runtime. In Proceedings of the 8th ACM SIGPLAN
InternationalWorkshop on Programming Based on Actors, Agents, and Decentralized
Control. 13–22. https://doi.org/10.1145/3281366.3281370

[17] George Steed and Sophia Drossopoulou. 2016. A principled design of capabilities
in Pony. Master’s thesis, Imperial College (2016).

[18] Sam Van den Vonder, Joeri De Koster, Florian Myter, and Wolfgang De Meuter.
2017. Tackling the awkward squad for reactive programming: the actor-reactor
model. In Proceedings of the 4th ACM SIGPLAN International Workshop on Re-
active and Event-Based Languages and Systems. 27–33. https://doi.org/10.1145/
3141858.3141863

[19] Nick Webster. 2020. Using Functional Reactive Programming to define Actor
Systems.

Received 2022-04-15; accepted 2022-05-06

https://doi.org/1721.1/6952
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1016/j.tcs.2018.09.001
https://doi.org/10.1145/117954.117975
https://akka.io/
https://doi.org/10.1109/fdl.2019.8876922
https://doi.org/10.4230/LIPIcs.ECOOP.2017.20
https://doi.org/10.1145/3241625.2976010
https://doi.org/10.1145/3241625.2976010
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://l42.is/
https://doi.org/10.1145/3281366.3281370
https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1145/3141858.3141863

	Abstract
	1 Introduction
	1.1 FRJ

	2 Formal Model
	2.1 Well Formedness
	2.2 Reduction Rules
	2.3 Reference and Object Capabilities
	2.4 Type Rules

	3 Example
	4 Related Work
	5 Conclusions and Future Work
	References

