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Abstract
Method names with multiple separate parts are a feature of
many dynamic languages derived from Smalltalk. Generalis-
ing the syntax of method names to allow parts to be repeated,
optional, or alternatives, means a single definition can re-
spond to a whole family of method requests. We show how
generalising method names can support flexible APIs for
domain-specific languages, complex initialisation tasks, and
control structures defined in libraries. We describe how we
have extended Grace to support generalised method names,
and prove that such an extension can be integrated into a
gradually-typed language while preserving type soundness.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Procedures, functions, and subroutines

Keywords Multi-part method names, application program-
ming interfaces, domain-specific languages

1. Introduction
Multi-part method names, where a method name is a se-
quence of multiple words each with their own parameters, go
back as far as methods like “between:and:” and “to:by:”
in Smalltalk-76 [25]. In this paper we present a generalisa-
tion of multi-part names by allowing parts to be repeated,
optional, or alternatives, so that a single method defines a
whole family of related names. Generalising method names
enables advanced APIs and domain-specific languages, blur-
ring the distinction between them. Generalising names also
gives concise definitions for families of methods for con-
trol structures, such as “if then”, “if then else”, “if
then elseif then”. By making explicit the structure of
these families of names, generalised methods allow auto-
mated error detection both dynamically and statically.
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The next section gives brief background on the Grace lan-
guage and the motivations for this work. Section 3 describes
the design of generalised method names. Section 4 shows
and evaluates the application of generalised names within
our target use cases, and Section 5 describes the extension
of an existing Grace implementation to add them. Section 6
presents a type-safe modification of the TinyGrace [27] for-
malism to incorporate generalised names into the type sys-
tem, while Sections 7, 8, and 9 position this paper among
related work, suggest future directions, and conclude.

2. Background
Grace is an object-oriented, block-structured, gradually- and
structurally-typed language intended to be used for educa-
tion [4]. Grace includes a number of features that enable
the definition of extended or restricted language variants for
domain-specific languages or particular teaching paradigms.

Method names in Grace can have multiple parts, as in
Smalltalk, but with a more conventional syntax. A method
can be declared:

method test(val) between(low) and(high) {

return (val > low) && (val < high)

}

This method name has three parts. Each part has its own
parameter list, which may contain many parameters, any or
all of which may be given types. Each parameter list may
also contain a single variadic parameter indicated by a prefix
“*”. The method above could be requested with:

test(5) between(3) and(10)

Multi-part method names allow control structures to be
implemented as methods. Like Smalltalk, Grace has no
syntactically-privileged control structures: if then else

is simply a three-part method accepting a boolean and two
lambda blocks (written between braces; these are used for
all code that may be executed a variable number of times).
A dialect [20] can define new control structures to be made
available to user code, which will have exactly the same
syntax as the built-in structures. Dialects aim to support the
design of restricted teaching sublanguages as well as flexible
embedded internal domain-specific languages.



3. Generalised Method Names
Generalised method names extend multi-part names so that
parts of names and arguments can be optional, repeated
or omitted entirely. A generalised name defines a whole
(potentially infinite) family of method names within a single
definition.

3.1 Use Cases
Several control structures included with Grace have a num-
ber of variants. The pattern-matching system of Grace [23],
for example, uses multi-part methods to define its match

case... statement. Many versions of this method are de-
fined, varying only in the number of cases. Similarly, many
instances of elseif and try catch are defined, and the
same for other structures with many slight variants. These
tedious repetitions motivate this work, which will permit a
single definition standing in for a whole family of methods.

We wish the system to cover all of the cases above and
similar user-defined control structures. In particular, we aim
to support these specific uses:

• match followed by many case parts.
• try followed by any number of catches, and then op-

tionally a finally.
• if then followed by any number of elseif then

pairs, optionally followed by an else.

As a secondary aim, we wish to enable defining more
“natural” syntax for complex operations, supporting defini-
tions with user-facing syntax along the lines of Microsoft’s
LINQ [31, 37], and to expose this ability to domain-specific
language authors. We wish a programmer to be able to de-
fine a complex fluid interface where parts may be varied,
repeated, or omitted according to appropriate rules, and to
build an implementation with a minimum of repetition. In
all cases, we aim to present meaningful error messages to
end users who make mistakes in the construction of their re-
quests, both statically and dynamically.

Finally, we aim to allow authors of libraries with complex
initialisation or configuration requirements to build user-
friendly, comprehensible, and encapsulated interfaces for
these tasks, without resorting to the Builder pattern [17] or
complicated method sequences that must be followed.

3.2 Declaration Syntax
We extend the syntax of method declarations to allow indi-
cating that a part may be provided more than once or not
at all. No modification is required to the user-level, call-side
syntax of the language. We borrow conventional syntax from
regular expressions to denote these parts.

A part can be made optional, meaning that a request of
this method need not provide that part, using ?:

method a(x) ?b(y) { ... }

Table 1. Syntax of generalised method declarations. Any of
the prefix operators can be applied to a parenthesised group.

+b(x) One or more b parts
*b(x) Zero or more b parts
?b(x) Optionally a b part

(b(x) | c(y)) Either a b or a c part
(b(x) c(y)) A b part followed by

a c part
?(b(x) c(y)) Optionally two parts

“b c” in sequence

This method allows both the requests a(1) and a(1)b(2).
A part can be allowed to occur more than once using +:

method a(x) +b(y) { ... }

The above allows requests a(1) b(2), a(1) b(2) b

(3), a(1) b(2) b(3) b(4), and so on. Similarly, a * in-
dicates that the part may be provided zero or more times.

We permit grouping parts together using parentheses, and
then applying any of the operators above to the entire group:

method a(x) +(b(y) c(z)) { ... }

The above permits a(1) b(2) c(3), a(1) b(2) c(3)

b(4) c(5), and so on.
Finally, a choice between particular options (alternation)

is permitted using | within a parenthesised group.

method a(w) (b(x) | c(y) | d(z)) { ... }

The above admits requests for all of a(1) b(2), a(1)
c(2), and a(1) d(2).

Collectively we refer to all of these as variable parts. A
method name with no variable parts is linear. Variable parts
can be nested inside one another, but we require that the body
of a variable part begin with a least one ordinary literal part
before any further variable parts appear.

3.2.1 Prefixes
We use method prefixes to identify methods, and to match
requests to declarations. The prefix of a multi-part method
name is the longest initial sequence of ordinary parts, plus
the prefix of the body of any + part that immediately fol-
lows. The prefix is thus the sequence of initial request parts
that is required in order for a declaration to match a request.
Two methods with the same prefix may not be defined in
the same object; subclasses’ declarations override inherited
methods with the same or longer prefix. A method request
is mapped to the declaration with the longest prefix. As the
prefix of a linear method is the entire method name, all pre-
existing methods work exactly as before.

3.3 Requesting Generalised Methods
Requesting a generalised method is indistinguishable from
a traditional linear method at the request site, both for re-
quests with an explicit receiver (using the traditional dot no-



tation) and for receiverless requests that are resolved in lex-
ical scope. A request simply includes a list of part names
and parameter lists, with no differentiation between variable
parts and other parts.

The receiver of a request must determine which method
to execute and map the parts of the request to the correspond-
ing parts of the method declaration. A method is identified
uniquely by the prefix of its name.

Once the method to execute has been identified, the parts
of the request must be matched with the parts of the decla-
ration. We elect to use a greedy approach to this matching:
for each part of the declaration, we determine whether it (or
the prefix of its body) matches at the start of the remaining
unmatched tail of the request, and if so attempt to match the
entire part, paying attention to the semantics of each kind of
variable part and consuming parts from the request. Within
a parenthesised group, we perform the same matching recur-
sively, and within an alternation attempt matching from left
to right. If a part is found in the request that we are unable to
match, we report an error.

After parts have been matched, arguments are in turn
matched to formal parameters. Because the parameters in-
cluded in variable parts are provided an unknown number of
times they are treated in the same fashion as variadic param-
eters, bound as a sequence. Nested variable parts result in
nested sequences.

3.4 Example
This example program illustrates the binding of parameters.
This method has one part, addRatio, which occurs at least
once, and one entirely optional part multiplyBy. Its prefix
is use addRatio.

method use(x) +addRatio(y1, y2)

?multiplyBy(z) {

var value := x

for (y1) and (y2) do { a, b −>
value := value + a / b

}

for (z) do { v −> return value * v }

return value

}

use(0) addRatio(1, 2) addRatio(2, 4)

multiplyBy(6) // −> 6
use(1) addRatio(2, 3)

multiplyBy(2) // −> 3 1/3

The literal part use always occurs exactly once, and so
its formal parameter x is bound to the actual argument. As
addRatio may be provided more than once, both of its
formal parameters y1 and y2 are bound to sequences inside
the method body.

The optional part multiplyBy similarly occurs an un-
determined number of times, so its parameter z is also in a
sequence. This sequence will contain at most one item; we

elect not to introduce an optional type to represent this case,
as it is not required elsewhere in the language.

Variable parts may be nested inside one another, and
this sequence-binding occurs recursively. An optional part
inside a repeated part, for example, results in its parameters
bound to a sequence of sequences: the outer sequence for
the repetition, and the inner sequence for the optionality. In
this way it is always possible to identify which parts were
provided and in what order.

3.5 Greedy Matching
We choose a greedy approach to method-part matching,
rather than traditional regular-expression backtracking, be-
cause it permits providing useful error messages to the user
in the case where the request does not match: we can report
concretely “expected to see part X, but instead saw Y” as
soon as we meet the issue, rather than reporting a generic
match failure later on. We also did not find any use case
for more complicated resolution rules; while claiming that
method names are defined by a regular grammar makes for
a nice paper, practical applications are limited. We prefer
to produce a better experience for the end user of a dialect,
who may be a novice or non-programmer, rather than allow-
ing (slightly) more freedom to the dialect implementer who
understands what they are doing.

This approach means that it is possible to declare a
method that can never be requested successfully. For ex-
ample, the following method is uncallable:

method a(x) *b(y) b(z) { ... }

The prefix of that method is simply a. Once the method is
identified, any sequence of b parts will be consumed and the
provided arguments stored in y. Because *b has consumed
all bs greedily, there will be no b part in the request left to be
matched against the final b in the declaration. An error will
be raised indicating that the end of the method name was
found while a required part was still expected.

Again, we do not consider this to be a real concern. Our
use cases all involve the use of different part names, which
resolves the issue, and we consider it only a theoretical con-
cern that would indicate particularly poor design in practice;
“don’t do that, then” remains as solid advice as ever, partic-
ularly to the advanced programmers who are the audience
for this feature. Regardless, the declaration a(x) +b(y) in
fact accepts the requests that were presumably the intention
of the above.

Our implementation detects some cases of such names
that might reasonably occur accidentally and reports static
errors at the declaration site, but makes no particular effort
to trap all cases. It is similarly possible to declare parts that
can never be filled as part of methods that are callable; we
do not consider these cases to be errors at all as they may
indicate work-in-progress code.



4. Evaluation of Generalised Names in Use
With the extension design in mind we can return to our use
cases from Section 3.1. Our motivation had three major cases
we wished to support: variadic control structures, complex
domain-specific languages, and libraries with large numbers
of interdependent configuration options.

4.1 Control Structures
Where previously there were nearly 2,000 lines of defini-
tions of the match case... methods (supporting up to 30
case blocks), we present here the complete implementa-
tion of all variants after the addition of generalised method
names, a mere 9 lines:

method match(target) +case(cases) {

for(cases) do { case −>
def mr = case.match(target)

if (mr) then {

return mr.result

}

}

fail "Did not match any case"

}

This new version supports an arbitrary number of cases,
and is much simpler to understand and modify than what it
replaced. Similarly, we are able to define all elseif then

and try catch finally variants simultaneously:

method if(bool) then(blk)

+(elseif(conds) then(blks))

?else(elseblk) { ... }

method try(blk) *catch(catchblk)

?finally(finallyblk) { ... }

These implementations are again much simpler than the
complex nesting and repetition that was otherwise required.

4.2 Query Language
Our broadest use case was complex domain-specific lan-
guages, and we present a case study of such a language. This
language is directly modelled on Microsoft’s LINQ for Ob-
jects and its syntactic embedding into C] and Visual Basic.

We can define a querying method supporting a fluent
syntax as in Figure 1. We capitalise the names of parts as
“where” is a keyword in Grace and is not available as part
of a method name. This method admits requests such as:

from(students)

Where { s −> s.enrolledIn "COMP231" }

Where { s −> s.age > 25 }

OrderBy { s −> s.gpa }

Select { s −> s.name }

Many filtering and ordering clauses may be provided, and
the query may end with either a projection onto the output or
a grouping operation. As in C] and Visual Basic, this query

method from<T>(source : Iterable<T>)

*Where(filter : Predicate<T>)

?(

OrderBy(ordering : Comparator<T>)

*ThenBy(tiebreak : Comparator<T>)

)

(

Select(selectProjection

: Function<T, Any>)

|

GroupBy(grouping

: Function<T, Any>)

)

{ ... }

Figure 1. Generalised query method header.

is simpler to read and write than the equivalent hand-written
code, but with generalised method names does not involve a
special-case sublanguage in the parser. The implementation
is still able to provide meaningful error messages when the
syntactic rules of the miniature DSL are broken, as for ex-
ample by omitting the selection or grouping component, or
providing clauses out of order.

The body of the method is reasonably simple given the
complexity of the task at hand. Parts that appear at most once
are handled trivially:

selectProjection.do { p −>
return data.select(p)

}

The more obtuse case is the ThenBy clause: because it is
within an optional group and may appear many times itself,
there are two layers between the parameter name and the
actual data:

tiebreak.do { ifPresent −>
for(ifPresent) do { t −>

data := data.thenBy(t)

}

}

Alternative implementations of this behaviour are possi-
ble using the structural knowledge provided elsewhere in the
method name. The complete implementation of this query
language is included in the samples provided in Section 5.

4.2.1 Discussion
The lack of binding forms manifests here: while macro-
based systems (including LINQ itself) are able to intro-
duce new identifiers and rewrite the user’s code accordingly,
Grace intentionally does not expose such functionality, so
that the execution semantics of all code is the same across
the board. As a result, the example query includes several
blocks { s −> ... } used to thread data items through the



process. These are in some respects unfortunate, but essen-
tial to allowing general-purpose extension without rendering
code unfollowable. A further language extension permitting
the structured introduction of new identifiers as method ar-
guments could ameliorate this issue, but the design of such
an extension is out of the scope of this paper.

4.3 Library Initialisation
Our final use case was libraries with complex initialisation
requirements, such as widget toolkits. It is common for a
given widget to have a great many possible configurations,
where only a selection of the options are provided in any
given instance but some options form a group that must al-
ways be provided together. The interfaces to these configu-
rations fall into three broad categories: the Builder pattern,
where an intermediate object supports providing configura-
tion options one at a time before being finalised into the
widget object; method sequences, where the object is first
created and then configured according to a defined protocol
before it may be used; and keyword arguments, where most
parameters have default values and can be set by name at
construction time. All of these approaches have drawbacks
that can be avoided using generalised method names.

All of the configuration options with default values can
be made optional parts, with the part names serving to la-
bel the role of each argument. Options that must be pro-
vided together can be grouped, and complex configura-
tion — placement and initialisation of subwidgets, for ex-
ample — can be integrated as a user-friendly sublanguage
within the main method body, incorporating their own repe-
titions, alternations or optional parts as required. With these
rules in place it will not be possible to omit a contextually
mandatory component or perform post-construction config-
uration operations out of order, while consistent error mes-
sages are always presented to the user.

We present the structure of a single common widget from
GTK+, a standard button. There are five constructors with
slightly different default configurations, and many other con-
figuration options that will commonly be provided in post-
constructor setup. The following condenses the constructors
and several common post-constructor configuration items
into a single method:

method button(handler : Block)

( ( label(text : String)

| mnemonic(mnemonicText : String) )

?(image(textImage : Image)

?position(imagePos:PositionType))

| namedIcon(name : String,

size : IconSize)

| image(image : Image)

| widget(w : Widget) )

?relief(style : ReliefStyle)

?alignment(xalign : Number,

yalign : Number) { ... }

We omit further options to save the reader’s patience. The
above method header is complex, but from the end user’s
perspective they simply describe what they want:

gtk.button { document.save }

label "Save"

image(icons.floppy_disk)

position(gtk.position.right)

relief(gtk.relief.none)

In the standard API, creating this button requires sev-
eral function calls, with those relating to icon positioning
having a required ordering. With the generalised method
name, there is a single essentially declarative method request
describing the desired outcome: a button that saves when
clicked, labelled “Save”, with a floppy disk image positioned
to the right of the text and no border. It is not possible to try
to specify the position of an icon that does not exist, or to try
to combine incompatible configurations. We include the full
implementation of this method in the distribution.

4.3.1 Discussion
The canonical GTK+ API relies on method sequences to per-
form this type of configuration, but the Builder pattern could
equally be used. A builder can provide a similar level of en-
forcement to generalised methods, using chained methods
instead of a single one, but creating the family of builders
to do so is immensely complicated. More commonly, a sin-
gle builder simply encapsulates the methods of a method se-
quence, leading to no real improvement over the equivalent
sequence API.

A further approach uses keyword arguments with default
values. In this case, keyword arguments would be a feasible
mechanism, but they do not provide the guarantees about
mutual presence or exclusivity that we desire: for example,
an image position could be specified regardless of whether
an applicable image exists. Such an error will pass silently
unless the implementer explicitly tests for the case and raises
a run-time error. There is no static or gradual checking of
such properties.

Keyword arguments also do poorly when there are mul-
tiplicities of arguments involved. In such cases, either list
arguments — potentially involving multiple lists which are
subsequently paired up, leading to likely misalignment — or
a combination of keyword arguments and method sequences
is necessary. The generalised method name inherently allows
controlled repetition of arguments and syntactic restrictions
on what may or must be provided together that pure keyword
arguments do not.

Boolean flags are not well supported by any technique,
but can be simulated in both the generalised methods and
Builder approaches through parts/methods that are given no
arguments. In our generalised-methods system these will
require empty parentheses () after the part name.



4.4 Testing DSL
While LINQ sits on the boundary of library and domain-
specific language, we also wish to present a pure DSL study.
This language is based heavily on the Gherkin language
used by the popular Cucumber [8] testing framework. While
Gherkin is “plain text”, as the authors found their earlier
experience of writing test case stories in Ruby code to be
awkward, we will instead embed almost the same natural-
language syntax directly into Grace code.

A Gherkin script consists of some number of “features”,
inside which may be one or more “scenarios” describing in-
dividual test cases. A scenario has a name, zero or more
“Given:” (setup) clauses, the second and subsequent of
which begin with “And:”, an event clause “When:”, and
one or more “Then:” postconditions, the second and subse-
quent of which again begin with “And:”. This grammar fits
nicely into our generalised method names, and we can de-
clare a single method to cover an entire scenario and all of
its possibilities:

method scenario(desc)

?(Given(context) *And(contexts))

When(event)

Then(expr) ShouldBe(val)

*(And(exprs) ShouldBe(vals)) {...}

We could instead define a method that handled an entire
feature, with some number of scenarios included:

method feature(name)

?background(initialisation)

+(scenario(desc)

?(Given(context) *And(contexts))

When(event)

Then(expr) ShouldBe(val)

*(And(exprs) ShouldBe(vals)))

In this case we elect not to do so, because defining a
separate feature method allows the introduction of new
variables in scope of a suite of tests, which we could not
do otherwise. Our final language permits defining tests in a
form like the following:

feature "Addition" do {

var x

var y := 1

scenario "1 + 2 = 3"

Given { x := 1 }

And { y := 2 }

When { x := x + y }

Then { x } ShouldBe { 3 }

scenario "1 + 2 = 4"

Given { x := 1 }

When { x := x + 2 }

Then { x } ShouldBe { 4 }

And { y } ShouldBe { 2 }

}

Table 2. Performance of benchmark programs on the unex-
tended baseline and generalised implementations.

Baseline Generalised Slowdown
Printer 1.744s 1.872s 7.3%
String 1.624s 1.532s -5.7%

These test cases have a natural-language flow to them,
while admitting arbitrary numbers of cases of setup and post-
conditions, or omitting the setup entirely, obtained from a
single generalised method definition. A complete implemen-
tation is included in the distribution from Section 5.

5. Implementation
We extended an existing implementation of Grace, an unop-
timising reference interpreter, to add support for generalised
method names. This implementation supports all of the vari-
able parts and behaviours described in Section 3. Where the
name of a requested method is found to be ill-formed, a con-
structive error message is reported indicating the part or parts
that were expected, and what was found instead.

A distribution of our extended implementation is avail-
able from http://ecs.vuw.ac.nz/~mwh/dls2015.zip.
This distribution includes the studies described in Section 4
and executes on all platforms.

5.1 Performance
The matching of request parts and parameters to generalised
method parts and parameters is more complex than for lit-
eral method names, and consequently more expensive at run
time. To quantify this cost, we performed an experiment run-
ning an existing piece of software that made heavy use of
“match +case” pattern matching, and executed it on both
modified and unmodified versions of the implementation.

We used a pretty-printing tool that reads Grace source
code and outputs it in executable form with semicolons in-
serted wherever permitted, and gave it its own source code
as input. The program was the same on both implementa-
tions, and is 519 lines of code. Every node in the parse tree
is examined in a 29-case match case statement, and sev-
eral smaller instances occur for particular nodes. The larger
statement executes 2,176 times. On the unextended imple-
mentation, there were 30 literal definitions of this method,
one for each number of cases, while on the extended imple-
mentation there was a single generalised definition.

We executed the program 50 times on each implementa-
tion and report the mean of all runs. All executions occurred
using Mono 4.0.1 on Arch Linux, with glibc 2.21 and Linux
4.0.5 on an otherwise idle machine with an Intel Core i7-
4790 CPU at 3.6GHz, using a single core. The results are
shown in Table 2.

The execution of this program, a likely worst-case sce-
nario for the extension, took 7.3% longer to complete with
generalised methods. Code that does not make heavy use of
very long requests of generalised methods in a tight loop

http://ecs.vuw.ac.nz/~mwh/dls2015.zip


would experience a smaller slowdown, and code that makes
no generalised requests at all will not be impacted. In fact,
such programs are liable to execute slightly faster, as there
are fewer confounding method definitions in existence: a
second sample program reversing strings completed 5.7%
faster in the generalised implementation. This implementa-
tion is entirely unoptimised, and we believe that substantial
reduction of this slowdown is possible without compromis-
ing the increase in speed given to programs that do not use
the generalised methods.

6. Semantics
Grace has optional types, so it is important that generalised
methods do not affect the soundness of the type system. The
language has a structural subtype system, meaning that one
type is a subtype of another if the subtype responds to all
the method requests that the supertype accepts with a com-
patible type. Generalised method names extend the range of
methods that can meet requests, and we here formalise this
as an extension to Tinygrace [27], an existing formalisation
of a subset of Grace, and prove that the resulting type system
remains sound.

The grammar of the signature part extension to the stan-
dard Tinygrace syntax is given in Figure 2. Note that at least
the prefix of any signature (and each of any variants) must
begin with a literal part or group. The + modifier has been
excluded, as it is sugar for a literal part followed by a *, and
would serve only to complicate the formal rules.

We write P as a method part sequence which begins with
at least one literal method part or alternation, and V as a
single, potentially variable P .

6.1 Subtyping
We overload the subtyping operator <: for all directed com-
patibility relations. Signature part compatibility is defined
in Figure 3. Compatibility between signature parts indi-
cates that any request to a method defined with the parts
in the super-sequence will also succeed as a request to a
method with the parts in the sub-sequence, which we refer
to as request compatibility. For instance, we would expect

Syntax

τ ::= type{S} | . . . (Structural type)

S ::= m(x : τ ) V → τ (Signature)

P ::= m(x : τ ) V | (P | P ) V (Signature parts)

V ::= µP (Variable parts)

µ ::= ε | * | ? (Part modifiers)

e ::= e.m(e) | object{method S {e}} | . . . (Expressions)

Figure 2. Partial grammar

S <: S

(S-SIG)

P1 <: P2 τ1 <: τ2

P1 → τ1 <: P2 → τ2

V <: V

(S-ONE)

τ2 <: τ1 V1 <: V2

m(x : τ1) V1 <:m(y : τ2) V2

(S-SKIP)

P1 6� P2 V1 <: V2

[?*]P1 V1 <: P2 V2

(S-LONE)

P1 <: P2 V1 <: V2

?P1 V1 <: [ε?]P2 V2

(S-MANY)

P1 <: P2 *P1 V1 <: V2

*P1 V1 <: [ε?*]P2 V2

(S-ALT/LEFT)

P1 V1 <: V2

(P1 | P2) V1 <: V2

(S-ALT/RIGHT)

P1 6� V2 P2 V1 <: V2

(P1 | P2) V1 <: V2

(S-ALT)

V1 <: P1 V2 V1 <: P2 V2

V1 <: (P1 | P2) V2

(S-EMPTY)

∅<: ∅

(S-END)

V <: ∅

[?*]P V <: ∅

Figure 3. Signature compatibility

a() *(b() | c()) <: a() *b() *c() to hold, because a method
which consists of a sequence of any mixture of b()s and c()s
can always handle requests to a method which strictly per-
mits a sequence of b() and then c(). The same would not
be true in reverse, as the request a() c() b() can be handled
by the alternation, but would not be accepted by the other
signature.

The compatibility test traverses a part sequence through
the modifiers and alternations, eventually matching literal
method parts or skipping a variable part in the sub-sequence
when the two part names are not the same. Requiring the
names to be different is important in the presence of the
greedy matching. For instance, it ensures that the sequence
?a() a() is not considered compatible with a(). The greedy
matching means that ?a() a() is exactly equivalent to a()
a(), which is not compatible with the sequence a().

Parameter compatibility is only addressed by Rule S-
ONE, as it is the only rule in the compatibility relation in
which two linear method parts are actually matched with one
another. The subtyping between parameters is contravariant,
compared to the covariant subtyping between signature re-
turn types in Rule S-SIG.

The soundness of the judgment is further complicated by
the left-to-right matching of the alternations. The judgment



P 6� V

(NP-LINEAR)

m(x : τ) V1 6�′ V2

m(x : τ) V1 6� V2

(NP-SPLIT)

P1 6� V2 P2 6� V2

(P1 | P2) V1 6� V2

V 6�′ V

(NP-DIFF)

m1 6= m2

m1(x : τ1) V1 6�′ m2(y : τ2) V2

(NP-VAR)

[?*]P V1 6�′ V2

(NP-LONE)

P1 6�′ P2 V2 P1 6�′ V2

P1 6�′ ?P2 V2

(NP-END)

P 6�′ ∅

(NP-MANY)

P1 6�′ P2 *P2 V2 P1 6�′ V2

P1 6�′ *P2 V2

(NP-ALT)

P1 6�′ P2 P1 6�′ P3

P1 6�′ (P2 | P3)

(NP-VAR/ALT)

(P1 | P2) V1 6�′ V2

V � m

(P-LINEAR)

V � m

m(x : τ) V � mm

(P-END)

V � ∅

(P-VAR)

[?*]P V � m

(P-VAR/ALT)

(P1 | P2) V � m

Figure 4. Prefix and negation judgments

a (b | b c) <: a b c should not succeed, because requests
to a method with the subsequence (b | b c) cannot use the
second part of the alternation: it will always be matched by
the first. Testing that an earlier prefix cannot have consumed
a request is a different question to compatibility, and requires
a ‘no matching prefix’ judgment, defined in Figure 4. The
judgment P 6� V holds if no corresponding part of a valid
request to a sequence V could have matched the maximal
linear prefix of P . Because the start of an alternation can be
a further alternation, the judgment must be split into a form
that distributes over alternations before testing prefixes.

Γ ` e : τ

(T-OBJ)

P . x : τ Γ, self : type{S}, x : τ ` e : τr

Γ ` object{method P → τr {e}} : type{S}

(Unique
prefixes
for P )

(T-REQ)

Γ ` es : type{S}
max({P → τ | P → τ ∈ S ∧ P � m}) = P → τr

Γ ` P ←↩ m(ep)

Γ ` es.m(ep) : τr

V . Γ

(M-ONE)

V . Γ

m(x : τ) V . x : τ ,Γ

(M-VAR)

P . Γ1 V . Γ2

[?*]P V . seq(Γ1), Γ2

(M-EMPTY)

∅ . ∅

(M-ALT)

P1 . Γ1 P2 . Γ2 V . Γ3

(P1 | P2) V . seq(Γ1), seq(Γ2), Γ3

Γ ` P ←↩ m(e)

(T-ONE)

Γ ` ep : τp Γ ` V ←↩ m(e)

Γ ` m(x : τp) V ←↩ m(ep) m(e)

(T-LONE)

Γ ` P V ←↩ m(e)

Γ ` ?P V ←↩ m(e)

(T-SKIP)

P 6� m() Γ ` V ←↩ m(e)

Γ ` [?*]P V ←↩ m(e)

(T-MANY)

Γ ` ?P *P V ←↩ m(e)

Γ ` *P V ←↩ m(e)

(T-EMPTY)

Γ ` ∅←↩ ∅

(T-ALT/LEFT)

Γ ` P1 V ←↩ m(e)

Γ ` (P1 | P2) V ←↩ m(e)

(T-ALT/RIGHT)

P1 6� m() Γ ` P2 V ←↩ m(e)

Γ ` (P1 | P2) V ←↩ m(e)

Figure 5. Partial typing judgment

While soundness w.r.t. request compatibility is achieved
in spite of the greedy matching, it is more difficult to achieve
completeness. A signature which cannot be requested such
as a *b b should require no matching sequence, as its inabil-
ity to be requested means that request compatibility is un-
affected. The provided compatibility rules still require that



e 7−→ e

(R-REQ)

max({P → τ {e} | method P → τ {e} ∈M ∧ P � m}) = P → τr {e} P ←↩ m(O) . v

object{M }.m(O) 7−→ e[sub(v)]

P ←↩ m(e) . v

(R-ONE)

v[x := ep] V ←↩ m(e) . v2

m(x : τ) V ←↩ m(ep) m(e) . v1, v2

(R-SKIP)

P 6� m() V ←↩ m(e) . v

[?*]P V ←↩ m(e) . empty(P ), v

(R-LONE)

P V ←↩ m(e) . v

?P V ←↩ m(e) . sing(P, v)

(R-MANY)

?P *P V ←↩ m(e) . v

*P V ←↩ m(e) . v

(R-EMPTY)

∅←↩ ∅ . ∅

(R-ALT/LEFT)

P1 V ←↩ m(e) . v

(P1 | P2) V ←↩ m(e) . sing(P1, v), empty(P2)

(R-ALT/RIGHT)

P1 6� m() P2 V ←↩ m(e) . v

(P1 | P2) V ←↩ m(e) . empty(P1), sing(P2, v)

Figure 6. Partial reduction rules

a ‘compatible’ set of parts appear in the subsequence, and
detecting signatures which cannot be requested is difficult
enough that we do not address it here.

6.2 Typing and Reduction
The type rules relevant to the extension are given in Figure 5.
The extension has made two changes. Typing of object lit-
erals (the only place where methods appear) is now com-
plicated by the possible appearance of variable parts. The
judgment V . Γ converts a sequence of method parts into
a set of type assumptions. We assume the existence of the
‘max’ auxiliary function, which selects the signature with
the longest linear prefix from a set, and the ‘seq’ auxiliary
function, which maps every type in a context into a sequence
type (defined as a type with an appropriate do() method, as
in the examples).

Requests now need to perform signature lookup by
method prefix, choosing the longest if there are multiple
results, and then check the types of the arguments in the
request parts against the types in the signature’s parts. The
judgment V � m, also defined in Figure 4, is essentially a
simpler form of the dual to 6�, as one of the sides is com-
pletely linear. Γ ` P ←↩ m(e) performs the matching of
part names to the linear and variable parts in the signature,
checking the types of the arguments against the required
types for parameters as it goes.

Again, in order to simulate the greedy matching, we need
a concept of no matching prefix judgment. Because the ex-
isting judgment does not take parameters into account, strip-

ping the arguments out of the method request and applying
it as a linear method signature allows reuse of the judgment.

The relevant reduction rules are provided in Figure 6. The
rules for P ←↩ m(e) . v closely follow the similar type
judgment, but have to substitute the actual values in for the
parameters instead of checking the types. Because some of
the parameters need to be collected and transformed into an
iterable object, the traversal over the method parts collects
the argument values in a map instead of performing the
substitution directly. Concatentation of maps concatenates
sequence values when a key is present on both sides. As
before, we assume there are informally defined auxiliary
functions in the rules: ‘empty’ builds a map with an empty
list for each of the parameter names in the given sequence,
‘sing’ wraps the corresponding values of the parameter keys
in the given part into singleton lists, and ‘sub’ transforms
a map into the substitutions defined by the map, translating
lists into sequence objects.

6.3 Properties
We wish to demonstrate that the variable method parts ex-
tension preserves an existing proof of soundness for the lan-
guage’s type system. To do this, we show that both progress
and preservation are not damaged by the extension. We do
not formally discuss the preservation rule, as we need only
demonstrate that substitution preservation still works. This
follows from a straightforward examination of the new rules,
given how the typing and reduction rules essentially map
onto each other.



To ensure that the existing progress theorem is undam-
aged, we only need to show that the method part compatibil-
ity judgment is actually sound w.r.t. request compatibility:
that if a fully resolved request expression is well-typed, then
it can be reduced to the (substituted) body of a method in the
object.

Lemma 1. If P1 <: P2 and P2 � m, then P1 � m.

Proof. By induction on the derivation of P2 � m. Both
sequences begin with a literal part, so in order for P1 <: P2

to hold, Rule S-ONE must hold. In subsequent steps through
the derivation, subtracting corresponding parts from both
sequences, P1 will meet a variable part, in which case the
axioms of � apply. P1 <: P2 guarantees that P1 cannot
remain linear after P2 has ended or met a variable part.

Lemma 2.
If P1 <: P2 and Γ ` P2 ←↩ m(e), then Γ ` P1 ←↩ m(e).

Proof. By induction on the derivation of Γ ` P2 ←↩ m(e)
with a case analysis on the last step, matching rules in P1 <:
P2 to find an appropriate rule to advance the goal. S-SKIP
might apply at any time, but it proceeds normally and so does
not affect the proof. T-ONE is only handled by a literal part,
and S-ONE upholds parameter typing through the parame-
ter compatibility relationship and subsumption. T-LONE, T-
MANY, and T-SKIP are handled by the lone or many rules,
so the compatibility rule may apply or skip, T-EMPTY is
handled by a series of skips until P1 is also empty, and the
remaining alternation rules are trivially handled by the inver-
sion of S-ALT.

Theorem 1. If Γ ` Os.m(Op) : τ then Os.m(Op) 7−→ e′.

Proof. Because Γ ` Os.m(Op) : τ , there exists a signature
with method parts P1 in the type whose prefix matches
the request m, and the method inclusion property of the
underlying type system ensures that there is a method M
with parts P2 in the corresponding object such that P2<:P1.
By Lemma 1, P2 � m.

It remains to show that P2 ←↩ m(Op) . v, with a
straightforward application of Lemma 2, and then matching
the similar rules from Γ ` P2 ←↩ m(Op) obtained from
inversion of the hypothesis.

7. Related Work
Multi-part Method Names (“selectors”) were first in-
troduced in Smalltalk-76 [25], and are widely used in
later Smalltalk-derived languages, such as Self [38] and
Newspeak [5]. Objective-C [7] introduced multi-part method
names into a C-derived syntax, and more recently Elements
Oxygene [34] supports multi-part names for Objective-C
compatibility. Smalltalk, Self, and Newspeak use multi-part
method names for control structures and consequently suffer
from the problems of multiple method definitions we address

in this paper: we expect these languages could equally ben-
efit from the more flexible method definitions we propose.

In Pharo Smalltalk 4.0, for example, the Collection class
has four separate method definitions to cover variants of
detect: ?ifFound: ?ifNone:, and definitions of class
methods +with: for up to six arguments. The Block class
has four definitions each for +value: and +cull:. All
Objects have four definitions for perform:*with:, and
ten for variants of when:(send:|sendOnce:)to:(with:|
withArguments:)?exclusive:. In Self 4.5 blocks have
six definitions for value:*With:, and strings over twenty
for various cases of sendTo:?DelegatingTo:*With:.

More generally, linguistic support for optional and named
(“keyword”) parameters goes back at least as far as Lisp Ma-
chine Lisp in the early 1980s [32]. Ada included optional
and named parameters in the Pascal tradition at around the
same time, and later C++ and C] in the C tradition; they
have also been proposed recently for Java [18]. Contempo-
rary dynamic languages have either tended to follow Lisp
with explicit support for optional named arguments (as in
Python and Ruby 2) or rely on passing explicit hashes (Perl,
Ruby 1). None of these offer the kind of flexible arguments
with optional, repeating, and nested parts that we provide.

Domain Specific Languages. The first organised effort
to build and combine small, special purpose, domain specific
languages (DSLs) was arguably the many “little languages”
written for Unix, also in the early to mid 1980s [2]. More re-
cently, building DSLs has become a recognised development
technique: Volker and Fowler provide good overviews of the
industrial state of practice [15, 39]. Fowler makes the key
distinction between “external” DSLs that are implemented
from scratch (either with compiler-compilers such as yacc,
or more recently, language workbenches such as SpooFax,
Cedalion, or Rascal [13, 28–30]) and “internal” (or “embed-
ded”) DSLs that are implemented within a host language.
Generalised method names support internal DSLs, so we do
not consider external DSLs further here.

Tobin-Hochstadt et al. [36] describe languages as li-
braries in Racket, a Scheme-based language that combines a
flexible Lisp Machine Lisp—style function call syntax with
a powerful macro language [9]. Racket reintroduced the con-
cept of using multiple “language levels” for teaching [14],
originally from SP/k [19], and much of Grace’s design is in-
spired by Racket. In practice, language definition in Racket
relies heavily on macros, whereas in Grace we aim to see
how far we can get with flexible method names but with-
out macros or defining forms. The advantage of avoiding
macros is that we avoid code that does not do what it ap-
pears to do: arguments are always evaluated before methods
are requested, new bindings are never introduced implic-
itly, and parse or type errors can stem only from what was
actually written in the input source code [20].

SugarJ [11] aims to provide Java with the same kind of
extensibility as macros in Racket or Lisp: Java programs can



include “sugar” definitions that define new syntax very flex-
ibly, and then provide rules that translate the sugar into stan-
dard Java code. SugarHaskell promises similar features for
Haskell [12]. Like other kinds of macros, SugarJ can provide
very flexible definitions, at a cost of introducing a whole
new kind of definition into the language, and making the
evaluation model significantly more complex (first macro-
expansion, then evaluation). In contrast, our approach does
not change either the caller-side syntax or the evaluation
model of Grace, but lets us write more flexible definitions
within the existing syntactic and semantic framework.

Ruby domain-specific languages are common [15]. Ruby’s
open classes permit modifying third-party classes, includ-
ing built-in objects, to add new globally-visible methods,
enabling users of the DSL to write, for example, 3.years
.ago to represent a time. Ruby also supports dynamically-
bound block evaluation using the instance_eval method,
which executes a block of code inside another object and
with access to methods defined in that object. Ruby’s syn-
tax permits reasonably fluid code to be written in this way,
and different DSLs may be used at different points by eval-
uating code inside different objects. In contrast, we provide
DSL definitions without requiring their authors to undertake
meta-programming, whether static or dynamic.

DSLs are not the sole preserve of dynamically typed lan-
guages. Scala [33, 35] includes several features supporting
DSLs, such as methods acting like built-in structures, op-
erators with many levels of precedence and associativity,
and implicit parameters that allow arguments to be passed
automatically. Like Racket, Scala also includes powerful
macro features [6, 10] integrating the compiler and runtime.
Haskell is also used to define domain specific languages
[1, 26], typically by using the language’s type classes to em-
bed them. Static type information directs which functions
are actually executed for a particular expression, often based
upon the calling context. A programmer can temporarily en-
ter the domain of a DSL simply by declaring the return type
of their function. In contrast to Scala and Haskell, neither
Grace’s original syntax, while flexible, or our extensions,
admit ambiguities that need to be resolved by static types.
Grace programs have the same semantics with or without
type definitions, and no matter how complex our extended
multiple-part method definitions, there is no change to the
client (caller-side) syntax. The run-time behaviour of di-
alects is exactly Grace method execution.

Regular-Expression Types. XDuce [24] and CDuce [3]
are domain specific languages for describing the types of
XML documents with a similar set of regular expression
combinators to the ones we have presented here: for in-
stance the type tag[child1 | child2*]. OCamlDuce [16] is a
similar extension to OCaml. All of the XML elements are
easily identified by their tag name (which makes matching
elements against types easier) but the type matching also

backtracks. We have accepted the semantic complication of
greedy matching for the aforementioned practical benefits.

The subtyping in XDuce operates in the opposite direc-
tion to the signature compatibility provided here, as their
regular expressions operate over types whereas our expres-
sions operate over methods. Accounting for more possibili-
ties in XDuce permits more elements to conform to a type,
but the same operation on method parts increases the con-
straints on the types instead. The XDuce type system also
features recursive types, whereas there are no recursive ref-
erences in the method part sequences as it is not considered
a practical concern.

8. Future Work
Performance optimisations to this system remain an open
question, and incorporating static type information into the
process is an area we intend to explore. We hope to apply
generalised method names in our work on visual program-
ming tools [21, 22], where they can make families of method
variants accessible through the use of only a small number
of common sub-parts. As well, the techniques we used here
for multi-part names could also be applied within the param-
eter lists of single-part names in languages without support
for multi-part names.

9. Conclusion
Defining families of multi-part method names with repe-
tition, alternation, and optionality enables domain-specific
languages and control structures to be defined more con-
cisely and easily, library APIs to act in ways previously re-
stricted to DSLs, and all of these to be checked for correct-
ness both at run time and statically with meaningful error
reports.

We have described a design for generalising methods,
with minimal restrictions on their content enabling informa-
tive error messages, and without any impact on the user-level
language, concentrating all complexity on the advanced pro-
grammers writing libraries with no change to call-side syn-
tax. We have presented both a fully-featured implementation
of these methods and case studies in each of our application
domains showing generalised names in practice. Further, we
showed that families of method names defined in this way
do not affect type soundness.

Our original goal for generalised names was only to sim-
plify the definitions of control structures, but we found ap-
plications in other areas that overwhelmed the importance
of our original goal. In particular, allowing ordinary library
APIs to define elegant, enforceable, extensible, encapsulated
sublanguages for interacting with them without any end-user
impact was an unanticipated benefit sufficient to recommend
the introduction of generalised names into any language with
multi-part methods. Generalised names turn out to be a rel-
atively small extension to an object-oriented language pro-
viding a disproportionate amount of power to programmers.
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